def main(self, N):
        Nx = Ny = N

        # g = structured.CartGrid([Nx, Ny], [2, 2])
        g = pp.StructuredTriangleGrid([Nx, Ny], [1, 1])
        g.compute_geometry()
        # co.coarsen(g, 'by_volume')

        # Assign parameters
        data = self.add_data(g)

        # Choose and define the solvers
        solver_flow = pp.MVEM("flow")
        solver_flow.discretize(g, data)
        A_flow, b_flow = solver_flow.assemble_matrix_rhs(g, data)

        solver_source = pp.DualScalarSource("flow")
        solver_source.discretize(g, data)
        A_source, b_source = solver_source.assemble_matrix_rhs(g, data)

        up = sps.linalg.spsolve(A_flow + A_source, b_flow + b_source)

        u = solver_flow.extract_flux(g, up, data)
        p = solver_flow.extract_pressure(g, up, data)
        #    P0u = solver_flow.project_flux(g, u, data, keyword="flow")

        diam = np.amax(g.cell_diameters())
        return diam, self.error_p(g, p)
    def __init__(self, gb, folder, tol):

        self.model = "flow"
        self.gb = gb
        self.data = None
        self.assembler = None

        # discretization operator name
        self.discr_name = "flux"
        self.discr = pp.RT0(self.model)

        self.mass_name = "mass"
        self.mass = pp.MixedMassMatrix(self.model)

        self.coupling_name = self.discr_name + "_coupling"
        self.coupling = pp.RobinCoupling(self.model, self.discr)

        self.source_name = "source"
        self.source = pp.DualScalarSource(self.model)

        # master variable name
        self.variable = "flow_variable"
        self.mortar = "lambda_" + self.variable

        # post process variables
        self.pressure = "pressure"
        self.flux = "darcy_flux"  # it has to be this one
        self.P0_flux = "P0_darcy_flux"

        # tolerance
        self.tol = tol

        # exporter
        self.save = pp.Exporter(self.gb, "solution", folder=folder)
Exemple #3
0
def solve_vem(gb, folder, discr_3d=None):
    # Choose and define the solvers and coupler
    flow_discretization = pp.MVEM("flow")
    source_discretization = pp.DualScalarSource("flow")
    run_flow(gb,
             flow_discretization,
             source_discretization,
             folder,
             is_FV=False,
             discr_3d=discr_3d)
Exemple #4
0
    def test_convergence_rt0_2d_iso_simplex(self):

        a = 8 * np.pi**2
        rhs_ex = lambda pt: np.multiply(np.sin(2 * np.pi * pt[0, :]),
                                        np.sin(2 * np.pi * pt[1, :]))
        p_ex = lambda pt: rhs_ex(pt) / a

        errs_known = np.array([
            0.00128247705764,
            0.000770088925769,
            0.00050939369071,
            0.000360006145403,
            0.000267209318912,
        ])

        for i, err_known in zip(np.arange(5), errs_known):
            g = pp.simplex.StructuredTriangleGrid([3 + i] * 2, [1, 1])
            g.compute_geometry()

            kxx = np.ones(g.num_cells)
            perm = pp.SecondOrderTensor(kxx=kxx, kyy=kxx, kzz=1)
            bf = g.get_boundary_faces()
            bc = pp.BoundaryCondition(g, bf, bf.size * ["dir"])
            bc_val = np.zeros(g.num_faces)
            bc_val[bf] = p_ex(g.face_centers[:, bf])
            # Minus sign to move to rhs
            source = np.multiply(g.cell_volumes, rhs_ex(g.cell_centers))

            solver = pp.RT0(keyword="flow")
            solver_rhs = pp.DualScalarSource(keyword="flow")

            specified_parameters = {
                "bc": bc,
                "bc_values": bc_val,
                "second_order_tensor": perm,
                "source": source,
            }
            data = pp.initialize_default_data(g, {}, "flow",
                                              specified_parameters)

            solver.discretize(g, data)
            solver_rhs.discretize(g, data)

            M, rhs_bc = solver.assemble_matrix_rhs(g, data)
            _, rhs = solver_rhs.assemble_matrix_rhs(g, data)

            up = sps.linalg.spsolve(M, rhs_bc + rhs)
            p = solver.extract_pressure(g, up, data)
            err = np.sqrt(
                np.sum(
                    np.multiply(g.cell_volumes,
                                np.power(p - p_ex(g.cell_centers), 2))))
            self.assertTrue(np.isclose(err, err_known))
Exemple #5
0
    def test_convergence_rt0_2d_ani_simplex(self):

        rhs_ex = lambda pt: 14
        p_ex = (lambda pt: 2 * np.power(pt[0, :], 2) - 6 * np.power(
            pt[1, :], 2) + np.multiply(pt[0, :], pt[1, :]))

        errs_known = np.array([
            0.014848639601,
            0.00928479234915,
            0.00625096095775,
            0.00446722560521,
            0.00334170283883,
        ])

        for i, err_known in zip(np.arange(5), errs_known):
            g = pp.simplex.StructuredTriangleGrid([3 + i] * 2, [1, 1])
            g.compute_geometry()

            kxx = 2 * np.ones(g.num_cells)
            kxy = np.ones(g.num_cells)
            perm = pp.SecondOrderTensor(kxx=kxx, kyy=kxx, kxy=kxy, kzz=1)
            bf = g.get_boundary_faces()
            bc = pp.BoundaryCondition(g, bf, bf.size * ["dir"])
            bc_val = np.zeros(g.num_faces)
            bc_val[bf] = p_ex(g.face_centers[:, bf])
            # Minus sign to move to rhs
            source = np.multiply(g.cell_volumes, rhs_ex(g.cell_centers))

            solver = pp.RT0(keyword="flow")
            solver_rhs = pp.DualScalarSource(keyword="flow")

            specified_parameters = {
                "bc": bc,
                "bc_values": bc_val,
                "second_order_tensor": perm,
                "source": source,
            }
            data = pp.initialize_default_data(g, {}, "flow",
                                              specified_parameters)

            solver.discretize(g, data)
            solver_rhs.discretize(g, data)
            M, rhs_bc = solver.assemble_matrix_rhs(g, data)
            _, rhs = solver_rhs.assemble_matrix_rhs(g, data)

            up = sps.linalg.spsolve(M, rhs_bc + rhs)
            p = solver.extract_pressure(g, up, data)
            err = np.sqrt(
                np.sum(
                    np.multiply(g.cell_volumes,
                                np.power(p - p_ex(g.cell_centers), 2))))
            self.assertTrue(np.isclose(err, err_known))
    def test_convergence_mvem_2d_ani_simplex(self):

        rhs_ex = lambda pt: 14
        p_ex = (
            lambda pt: 2 * np.power(pt[0, :], 2)
            - 6 * np.power(pt[1, :], 2)
            + np.multiply(pt[0, :], pt[1, :])
        )
        u_ex_0 = lambda pt: -9 * pt[0, :] + 10 * pt[1, :] + 4
        u_ex_1 = lambda pt: -6 * pt[0, :] + 23 * pt[1, :] + 5

        p_errs_known = np.array(
            [
                0.2411784823808065,
                0.13572349427526526,
                0.08688469978140642,
                0.060345813825004285,
                0.044340156291519606,
            ]
        )
        u_errs_known = np.array(
            [
                1.7264059760345327,
                1.3416423116340397,
                1.0925566034251672,
                0.9198698104736416,
                0.7936243780450764,
            ]
        )

        for i, p_err_known, u_err_known in zip(
            np.arange(5), p_errs_known, u_errs_known
        ):
            g = pp.StructuredTriangleGrid([3 + i] * 2, [1, 1])
            g.compute_geometry()

            kxx = 2 * np.ones(g.num_cells)
            kxy = np.ones(g.num_cells)
            perm = pp.SecondOrderTensor(kxx=kxx, kyy=kxx, kxy=kxy, kzz=1)
            bf = g.get_boundary_faces()
            bc = pp.BoundaryCondition(g, bf, bf.size * ["dir"])
            bc_val = np.zeros(g.num_faces)
            bc_val[bf] = p_ex(g.face_centers[:, bf])
            # Minus sign to move to rhs
            source = np.multiply(g.cell_volumes, rhs_ex(g.cell_centers))
            vect = np.vstack(
                (g.cell_volumes, 2 * g.cell_volumes, np.zeros(g.num_cells))
            ).ravel(order="F")

            solver = pp.MVEM(keyword="flow")
            solver_rhs = pp.DualScalarSource(keyword="flow")

            specified_parameters = {
                "bc": bc,
                "bc_values": bc_val,
                "second_order_tensor": perm,
                "source": source,
                "vector_source": vect,
            }
            data = pp.initialize_default_data(g, {}, "flow", specified_parameters)

            solver.discretize(g, data)
            solver_rhs.discretize(g, data)
            M, rhs_bc = solver.assemble_matrix_rhs(g, data)
            _, rhs = solver_rhs.assemble_matrix_rhs(g, data)

            up = sps.linalg.spsolve(M, rhs_bc + rhs)
            p = solver.extract_pressure(g, up, data)
            err = np.sqrt(
                np.sum(
                    np.multiply(g.cell_volumes, np.power(p - p_ex(g.cell_centers), 2))
                )
            )
            self.assertTrue(np.isclose(err, p_err_known))

            P = data[pp.DISCRETIZATION_MATRICES]["flow"][solver.vector_proj_key]
            u = solver.extract_flux(g, up, data)
            P0u = solver.project_flux(g, u, data)
            uu_ex_0 = u_ex_0(g.cell_centers)
            uu_ex_1 = u_ex_1(g.cell_centers)
            uu_ex_2 = np.zeros(g.num_cells)
            uu_ex = np.vstack((uu_ex_0, uu_ex_1, uu_ex_2))
            err = np.sqrt(
                np.sum(
                    np.multiply(
                        g.cell_volumes, np.sum(np.power(P0u - uu_ex, 2), axis=0)
                    )
                )
            )
            self.assertTrue(np.isclose(err, u_err_known))
    def test_convergence_mvem_2d_iso_simplex(self):

        a = 8 * np.pi ** 2
        rhs_ex = lambda pt: np.multiply(
            np.sin(2 * np.pi * pt[0, :]), np.sin(2 * np.pi * pt[1, :])
        )
        p_ex = lambda pt: rhs_ex(pt) / a
        u_ex_0 = (
            lambda pt: np.multiply(
                -np.cos(2 * np.pi * pt[0, :]), np.sin(2 * np.pi * pt[1, :])
            )
            * 2
            * np.pi
            / a
            + 1
        )
        u_ex_1 = (
            lambda pt: np.multiply(
                -np.sin(2 * np.pi * pt[0, :]), np.cos(2 * np.pi * pt[1, :])
            )
            * 2
            * np.pi
            / a
        )

        p_errs_known = np.array(
            [
                0.007347293666843033,
                0.004057878042430692,
                0.002576479539795832,
                0.0017817307824819935,
                0.0013057660031758425,
            ]
        )

        u_errs_known = np.array(
            [
                0.024425617686195774,
                0.016806807988931565,
                0.012859109258624922,
                0.010445238111710832,
                0.00881184436169123,
            ]
        )

        for i, p_err_known, u_err_known in zip(
            np.arange(5), p_errs_known, u_errs_known
        ):
            g = pp.StructuredTriangleGrid([3 + i] * 2, [1, 1])
            g.compute_geometry()

            kxx = np.ones(g.num_cells)
            perm = pp.SecondOrderTensor(kxx=kxx, kyy=kxx, kzz=1)
            bf = g.get_boundary_faces()
            bc = pp.BoundaryCondition(g, bf, bf.size * ["dir"])
            bc_val = np.zeros(g.num_faces)
            bc_val[bf] = p_ex(g.face_centers[:, bf])
            # Minus sign to move to rhs
            source = np.multiply(g.cell_volumes, rhs_ex(g.cell_centers))
            vect = np.vstack(
                (g.cell_volumes, np.zeros(g.num_cells), np.zeros(g.num_cells))
            ).ravel(order="F")

            solver = pp.MVEM(keyword="flow")
            solver_rhs = pp.DualScalarSource(keyword="flow")

            specified_parameters = {
                "bc": bc,
                "bc_values": bc_val,
                "second_order_tensor": perm,
                "source": source,
                "vector_source": vect,
            }
            data = pp.initialize_default_data(g, {}, "flow", specified_parameters)

            solver.discretize(g, data)
            solver_rhs.discretize(g, data)

            M, rhs_bc = solver.assemble_matrix_rhs(g, data)
            _, rhs = solver_rhs.assemble_matrix_rhs(g, data)

            up = sps.linalg.spsolve(M, rhs_bc + rhs)
            p = solver.extract_pressure(g, up, data)
            err = np.sqrt(
                np.sum(
                    np.multiply(g.cell_volumes, np.power(p - p_ex(g.cell_centers), 2))
                )
            )
            self.assertTrue(np.isclose(err, p_err_known))

            _ = data[pp.DISCRETIZATION_MATRICES]["flow"][solver.vector_proj_key]
            u = solver.extract_flux(g, up, data)
            P0u = solver.project_flux(g, u, data)
            uu_ex_0 = u_ex_0(g.cell_centers)
            uu_ex_1 = u_ex_1(g.cell_centers)
            uu_ex_2 = np.zeros(g.num_cells)
            uu_ex = np.vstack((uu_ex_0, uu_ex_1, uu_ex_2))
            err = np.sqrt(
                np.sum(
                    np.multiply(
                        g.cell_volumes, np.sum(np.power(P0u - uu_ex, 2), axis=0)
                    )
                )
            )
            self.assertTrue(np.isclose(err, u_err_known))
Exemple #8
0
    def test_upwind_example_3(self, if_export=False):
        #######################
        # Simple 2d upwind problem with explicit Euler scheme in time coupled with
        # a Darcy problem
        #######################
        T = 2
        Nx, Ny = 10, 10

        def funp_ex(pt):
            return -np.sin(pt[0]) * np.sin(pt[1]) - pt[0]

        g = pp.CartGrid([Nx, Ny], [1, 1])
        g.compute_geometry()

        # Permeability
        perm = pp.SecondOrderTensor(kxx=np.ones(g.num_cells))

        # Boundaries
        b_faces = g.get_all_boundary_faces()
        bc = pp.BoundaryCondition(g, b_faces, ["dir"] * b_faces.size)
        bc_val = np.zeros(g.num_faces)
        bc_val[b_faces] = funp_ex(g.face_centers[:, b_faces])
        specified_parameters = {
            "bc": bc,
            "bc_values": bc_val,
            "second_order_tensor": perm,
        }
        data = pp.initialize_default_data(g, {}, "flow", specified_parameters)
        solver = pp.MVEM("flow")
        solver.discretize(g, data)
        D_flow, b_flow = solver.assemble_matrix_rhs(g, data)

        solver_source = pp.DualScalarSource("flow")
        solver_source.discretize(g, data)
        D_source, b_source = solver_source.assemble_matrix_rhs(g, data)

        up = sps.linalg.spsolve(D_flow + D_source, b_flow + b_source)
        _, u = solver.extract_pressure(g, up, data), solver.extract_flux(g, up, data)

        # Darcy_Flux
        dis = u

        # Boundaries
        bc = pp.BoundaryCondition(g, b_faces, ["dir"] * b_faces.size)
        bc_val = np.hstack(([1], np.zeros(g.num_faces - 1)))
        specified_parameters = {"bc": bc, "bc_values": bc_val, "darcy_flux": dis}
        data = pp.initialize_default_data(g, {}, "transport", specified_parameters)

        # Advect solver
        advect = pp.Upwind("transport")
        advect.discretize(g, data)

        U, rhs = advect.assemble_matrix_rhs(g, data)
        time_step = advect.cfl(g, data)
        rhs = time_step * rhs
        U = time_step * U

        data[pp.PARAMETERS]["transport"]["time_step"] = time_step
        mass = pp.MassMatrix("transport")
        mass.discretize(g, data)
        M, _ = mass.assemble_matrix_rhs(g, data)

        conc = np.zeros(g.num_cells)
        M_minus_U = M - U
        inv_mass = pp.InvMassMatrix("transport")
        inv_mass.discretize(g, data)
        invM, _ = inv_mass.assemble_matrix_rhs(g, data)

        # Loop over the time
        Nt = int(T / time_step)
        time = np.empty(Nt)
        for i in np.arange(Nt):

            # Update the solution
            conc = invM.dot((M_minus_U).dot(conc) + rhs)
            time[i] = time_step * i

        known = np.array(
            [
                9.63168200e-01,
                8.64054875e-01,
                7.25390695e-01,
                5.72228235e-01,
                4.25640080e-01,
                2.99387331e-01,
                1.99574336e-01,
                1.26276876e-01,
                7.59011550e-02,
                4.33431230e-02,
                3.30416807e-02,
                1.13058617e-01,
                2.05372538e-01,
                2.78382057e-01,
                3.14035373e-01,
                3.09920132e-01,
                2.75024694e-01,
                2.23163145e-01,
                1.67386939e-01,
                1.16897527e-01,
                1.06111312e-03,
                1.11951850e-02,
                3.87907727e-02,
                8.38516119e-02,
                1.36617802e-01,
                1.82773271e-01,
                2.10446545e-01,
                2.14651936e-01,
                1.97681518e-01,
                1.66549151e-01,
                3.20751341e-05,
                9.85780113e-04,
                6.07062715e-03,
                1.99393042e-02,
                4.53237556e-02,
                8.00799828e-02,
                1.17199623e-01,
                1.47761481e-01,
                1.64729339e-01,
                1.65390555e-01,
                9.18585872e-07,
                8.08267622e-05,
                8.47227168e-04,
                4.08879583e-03,
                1.26336029e-02,
                2.88705048e-02,
                5.27841497e-02,
                8.10459333e-02,
                1.07956484e-01,
                1.27665318e-01,
                2.51295298e-08,
                6.29844122e-06,
                1.09361990e-04,
                7.56743783e-04,
                3.11384414e-03,
                9.04446601e-03,
                2.03443897e-02,
                3.75208816e-02,
                5.89595194e-02,
                8.11457277e-02,
                6.63498510e-10,
                4.73075468e-07,
                1.33728945e-05,
                1.30243418e-04,
                7.01905707e-04,
                2.55272292e-03,
                6.96686157e-03,
                1.52290448e-02,
                2.78607282e-02,
                4.40402650e-02,
                1.71197497e-11,
                3.47118057e-08,
                1.57974045e-06,
                2.13489614e-05,
                1.48634295e-04,
                6.68104990e-04,
                2.18444135e-03,
                5.58646819e-03,
                1.17334966e-02,
                2.09744728e-02,
                4.37822313e-13,
                2.52373622e-09,
                1.83589660e-07,
                3.40553325e-06,
                3.02948532e-05,
                1.66504215e-04,
                6.45119867e-04,
                1.90731440e-03,
                4.53436628e-03,
                8.99977737e-03,
                1.12627412e-14,
                1.84486857e-10,
                2.13562387e-08,
                5.39492977e-07,
                6.08223906e-06,
                4.05535296e-05,
                1.84731221e-04,
                6.25871542e-04,
                1.66459389e-03,
                3.59980231e-03,
            ]
        )

        assert np.allclose(conc, known)