Exemple #1
0
    def test_non_zero_bc_val(self):
        """
        We mixed bc_val on domain boundary and fracture displacement in
        x-direction.
        """
        frac = np.array([[1, 1, 1], [1, 2, 1], [2, 2, 1], [2, 1, 1]]).T
        physdims = np.array([3, 3, 2])

        g = pp.meshing.cart_grid([frac], [3, 3, 2],
                                 physdims=physdims).grids_of_dimension(3)[0]
        data = {"param": pp.Parameters(g)}

        # Define boundary conditions
        bc_val = np.zeros((g.dim, g.num_faces))
        frac_slip = np.zeros((g.dim, g.num_faces))

        frac_bnd = g.tags["fracture_faces"]
        dom_bnd = g.tags["domain_boundary_faces"]

        frac_slip[0, frac_bnd] = np.ones(np.sum(frac_bnd))
        bc_val[:, dom_bnd] = g.face_centers[:, dom_bnd]

        bound = pp.BoundaryCondition(g, g.get_all_boundary_faces(), "dir")

        data["param"].set_bc("mechanics", bound)
        data["param"].set_bc_val("mechanics", bc_val.ravel("F"))
        data["param"].set_slip_distance(frac_slip.ravel("F"))
        solver = pp.FracturedMpsa()

        A, b = solver.matrix_rhs(g, data)
        u = np.linalg.solve(A.A, b)

        u_f = solver.extract_frac_u(g, u)
        u_c = solver.extract_u(g, u)
        u_c = u_c.reshape((3, -1), order="F")

        # Test traction
        frac_faces = g.frac_pairs
        frac_left = frac_faces[0]
        frac_right = frac_faces[1]

        T = solver.traction(g, data, u)
        T = T.reshape((3, -1), order="F")
        T_left = T[:, frac_left]
        T_right = T[:, frac_right]

        self.assertTrue(np.allclose(T_left, T_right))

        # we have u_lhs - u_rhs = 1 so u_lhs should be positive
        mid_ind = int(round(u_f.size / 2))
        u_left = u_f[:mid_ind]
        u_right = u_f[mid_ind:]

        true_diff = np.atleast_2d(np.array([1, 0, 0])).T
        u_left = u_left.reshape((3, -1), order="F")
        u_right = u_right.reshape((3, -1), order="F")
        self.assertTrue(np.all(np.abs(u_left - u_right - true_diff) < 1e-10))

        # should have a positive displacement for all cells
        self.assertTrue(np.all(u_c > 0))
Exemple #2
0
    def test_unit_slip(self):
        """
        test unit slip of fractures
        """
        frac = np.array([[1, 1, 1], [1, 2, 1], [2, 2, 1], [2, 1, 1]]).T
        physdims = np.array([3, 3, 2])
        g = pp.meshing.cart_grid([frac], [3, 3, 2],
                                 physdims=physdims).grids_of_dimension(3)[0]

        data = {"param": pp.Parameters(g)}
        bound = pp.BoundaryConditionVectorial(g, g.get_all_boundary_faces(),
                                              "dir")

        data["param"].set_bc("mechanics", bound)

        frac_slip = np.zeros((g.dim, g.num_faces))
        frac_bnd = g.tags["fracture_faces"]
        frac_slip[:, frac_bnd] = np.ones((g.dim, np.sum(frac_bnd)))

        data["param"].set_slip_distance(frac_slip.ravel("F"))

        solver = pp.FracturedMpsa()

        A, b = solver.matrix_rhs(g, data, inverter="python")
        u = np.linalg.solve(A.A, b)

        u_f = solver.extract_frac_u(g, u)
        u_c = solver.extract_u(g, u)
        u_c = u_c.reshape((3, -1), order="F")

        # obtain fracture faces and cells
        frac_faces = g.frac_pairs
        frac_left = frac_faces[0]
        frac_right = frac_faces[1]

        cell_left = np.ravel(np.argwhere(g.cell_faces[frac_left, :])[:, 1])
        cell_right = np.ravel(np.argwhere(g.cell_faces[frac_right, :])[:, 1])

        # Test traction
        T = solver.traction(g, data, u)
        T = T.reshape((3, -1), order="F")
        T_left = T[:, frac_left]
        T_right = T[:, frac_right]

        self.assertTrue(np.allclose(T_left, T_right))

        # we have u_lhs - u_rhs = 1 so u_lhs should be positive
        self.assertTrue(np.all(u_c[:, cell_left] > 0))
        self.assertTrue(np.all(u_c[:, cell_right] < 0))
        mid_ind = int(round(u_f.size / 2))
        u_left = u_f[:mid_ind]
        u_right = u_f[mid_ind:]
        self.assertTrue(np.all(np.abs(u_left - u_right - 1) < 1e-10))

        # fracture displacement should be symetric since everything else is
        # symetric
        self.assertTrue(np.allclose(u_left, 0.5))
        self.assertTrue(np.allclose(u_right, -0.5))
Exemple #3
0
    def test_domain_cut_in_two(self):
        """
        test domain cut in two. We place 1 dirichlet on top. zero dirichlet on
        bottom and 0 neumann on sides. Further we place 1 displacement on
        fracture. this should give us displacement 1 on top cells and 0 on
        bottom cells and zero traction on all faces
        """

        frac = np.array([[0, 0, 1], [0, 3, 1], [3, 3, 1], [3, 0, 1]]).T
        g = pp.meshing.cart_grid([frac], [3, 3, 2]).grids_of_dimension(3)[0]
        data = {"param": pp.Parameters(g)}

        tol = 1e-6
        frac_bnd = g.tags["fracture_faces"]
        top = g.face_centers[2] > 2 - tol
        bot = g.face_centers[2] < tol

        dir_bound = top | bot | frac_bnd

        bound = pp.BoundaryConditionVectorial(g, dir_bound, "dir")

        bc_val = np.zeros((g.dim, g.num_faces))
        bc_val[:, top] = np.ones((g.dim, np.sum(top)))
        frac_slip = np.zeros((g.dim, g.num_faces))
        frac_slip[:, frac_bnd] = np.ones(np.sum(frac_bnd))

        data["param"].set_bc("mechanics", bound)
        data["param"].set_bc_val("mechanics", bc_val.ravel("F"))
        data["param"].set_slip_distance(frac_slip.ravel("F"))

        solver = pp.FracturedMpsa()

        A, b = solver.matrix_rhs(g, data, inverter="python")
        u = np.linalg.solve(A.A, b)

        u_f = solver.extract_frac_u(g, u)
        u_c = solver.extract_u(g, u)
        u_c = u_c.reshape((3, -1), order="F")
        T = solver.traction(g, data, u)

        top_cells = g.cell_centers[2] > 1

        mid_ind = int(round(u_f.size / 2))
        u_left = u_f[:mid_ind]
        u_right = u_f[mid_ind:]

        self.assertTrue(np.allclose(u_left, 1))
        self.assertTrue(np.allclose(u_right, 0))
        self.assertTrue(np.allclose(u_c[:, top_cells], 1))
        self.assertTrue(np.allclose(u_c[:, ~top_cells], 0))
        self.assertTrue(np.allclose(T, 0))
Exemple #4
0
    def test_zero_force(self):
        """
        test that nothing moves if nothing is touched
        """
        g = self.gb3d.grids_of_dimension(3)[0]

        data = {"param": pp.Parameters(g)}
        bound = pp.BoundaryCondition(g, g.get_all_boundary_faces(), "dir")

        data["param"].set_bc("mechanics", bound)

        solver = pp.FracturedMpsa()

        A, b = solver.matrix_rhs(g, data)
        u = np.linalg.solve(A.A, b)
        T = solver.traction(g, data, u)

        self.assertTrue(np.all(np.abs(u) < 1e-10))
        self.assertTrue(np.all(np.abs(T) < 1e-10))
Exemple #5
0
    def test_given_traction_on_fracture(self):
        """
        We specify the traction on the fracture faces.
        """
        frac = np.array([[1, 1, 1], [1, 2, 1], [2, 2, 1], [2, 1, 1]]).T
        normal_ind = 2
        physdims = np.array([3, 3, 2])

        g = pp.meshing.cart_grid([frac], [3, 3, 2],
                                 physdims=physdims).grids_of_dimension(3)[0]
        data = {"param": pp.Parameters(g)}

        # Define boundary conditions
        bc_val = np.zeros((g.dim, g.num_faces))
        frac_traction = np.zeros((g.dim, g.num_faces))

        frac_bnd = g.tags["fracture_faces"]
        # Positive values in the normal direction correspond to a normal force
        # pointing from the fracture to the matrix.
        frac_traction[normal_ind, frac_bnd] = np.ones(np.sum(frac_bnd))

        bound = pp.BoundaryConditionVectorial(g, g.get_all_boundary_faces(),
                                              "dir")

        data["param"].set_bc("mechanics", bound)
        data["param"].set_bc_val("mechanics", bc_val.ravel("F"))
        # Even though we now prescribe the traction, the discretisation uses
        # the same parameter function "get_slip_distance"
        data["param"].set_slip_distance(frac_traction.ravel("F"))
        solver = pp.FracturedMpsa(given_traction=True)

        A, b = solver.matrix_rhs(g, data, inverter="python")
        u = np.linalg.solve(A.A, b)

        u_f = solver.extract_frac_u(g, u)
        u_c = solver.extract_u(g, u)
        u_c = u_c.reshape((3, -1), order="F")

        # Test traction
        frac_faces = g.frac_pairs
        frac_left = frac_faces[0]
        frac_right = frac_faces[1]

        T = solver.traction(g, data, u)
        T = T.reshape((3, -1), order="F")
        T_left = T[:, frac_left]
        T_right = T[:, frac_right]
        self.assertTrue(np.all(np.isclose(T_left - T_right, 0)))

        # we have u_lhs - u_rhs = 1 so u_lhs should be positive
        mid_ind = int(round(u_f.size / 2))
        u_left = u_f[:mid_ind]
        u_right = u_f[mid_ind:]

        u_left = u_left.reshape((3, -1), order="F")
        u_right = u_right.reshape((3, -1), order="F")
        # The normal displacements should be equal and of opposite direction.
        self.assertTrue(np.all(np.isclose(u_left + u_right, 0)))
        # They should also correspond to an opening of the fracture
        self.assertTrue(np.all((u_left - u_right)[normal_ind] > .2))

        # The maximum displacement magnitude should be observed at the fracture
        self.assertTrue(np.all(np.abs(u_c) < np.max(u_left[normal_ind])))