Exemple #1
0
    def test_p1_1d(self):
        g = pp.structured.CartGrid(1, 1)
        g.compute_geometry()

        kxx = np.ones(g.num_cells)
        perm = pp.SecondOrderTensor(3, kxx, kyy=1, kzz=1)
        bn = g.get_boundary_nodes()
        bc = pp.BoundaryConditionNode(g, bn, bn.size * ["neu"])

        solver = pp.P1(physics="flow")

        param = pp.Parameters(g)
        param.set_tensor(solver, perm)
        param.set_bc(solver, bc)
        M = solver.matrix(g, {"param": param}).todense()

        M_known = np.matrix([[1., -1.], [-1., 1.]])

        self.assertTrue(np.allclose(M, M_known))

        solver = pp.P1MassMatrix(physics="flow")
        M = solver.matrix(g, {"param": param}).todense()

        M_known = np.matrix([[2., 1.], [1., 2.]]) / 6.

        self.assertTrue(np.allclose(M, M_known))
Exemple #2
0
    def matrix_rhs(self, g, data):
        param = data["param"]

        solver = pp.P1MassMatrix(physics=self.physics)
        M = solver.matrix(g, data)

        lhs = sps.csc_matrix((self.ndof(g), self.ndof(g)))

        return lhs, M.dot(param.get_source(self))
Exemple #3
0
    def test_p1_2d_iso_simplex_surf(self):
        g = pp.simplex.StructuredTriangleGrid([1, 1], [1, 1])
        R = cg.rot(-np.pi / 4., [1, 1, -1])
        g.nodes = np.dot(R, g.nodes)
        g.compute_geometry()

        kxx = np.ones(g.num_cells)
        perm = pp.SecondOrderTensor(3, kxx=kxx, kyy=kxx, kzz=1)
        perm.rotate(R)

        bn = g.get_boundary_nodes()
        bc = pp.BoundaryConditionNode(g, bn, bn.size * ["neu"])
        solver = pp.P1(physics="flow")

        param = pp.Parameters(g)
        param.set_tensor(solver, perm)
        param.set_bc(solver, bc)
        M = solver.matrix(g, {"param": param}).todense()

        # Matrix computed with an already validated code
        M_known = np.matrix(
            [
                [1., -0.5, -0.5, 0.],
                [-0.5, 1., 0., -0.5],
                [-0.5, 0., 1., -0.5],
                [0., -0.5, -0.5, 1.],
            ]
        )

        self.assertTrue(np.allclose(M, M.T))
        self.assertTrue(np.allclose(M, M_known))

        solver = pp.P1MassMatrix(physics="flow")
        M = solver.matrix(g, {"param": param}).todense()

        M_known = (
            np.matrix(
                [
                    [1., 0.25, 0.25, 0.5],
                    [0.25, 0.5, 0., 0.25],
                    [0.25, 0., 0.5, 0.25],
                    [0.5, 0.25, 0.25, 1.],
                ]
            )
            / 6.
        )

        self.assertTrue(np.allclose(M, M_known))
Exemple #4
0
    def test_p1_convergence_1d_not_exact(self):

        p_ex = lambda pt: np.sin(2 * np.pi * pt[0, :])
        source_ex = lambda pt: 4 * np.pi ** 2 * np.sin(2 * np.pi * pt[0, :])

        known_errors = [
            0.0739720694066,
            0.0285777089832,
            0.00791150843359,
            0.00202828006648,
            0.00051026002257,
            0.000127765008718,
            3.19537621983e-05,
        ]

        for i, known_error in zip(np.arange(7), known_errors):
            g = pp.structured.CartGrid(4 * 2 ** i, 1)
            g.compute_geometry()

            kxx = np.ones(g.num_cells)
            perm = pp.SecondOrderTensor(3, kxx, kyy=1, kzz=1)
            bn = g.get_boundary_nodes()
            bc = pp.BoundaryConditionNode(g, bn, bn.size * ["dir"])
            source_val = source_ex(g.nodes)

            solver = pp.P1(physics="flow")
            integral = pp.P1Source(physics="flow")

            param = pp.Parameters(g)
            param.set_tensor(solver, perm)
            param.set_bc(solver, bc)
            param.set_source(solver, source_val)
            M, _ = solver.matrix_rhs(g, {"param": param})
            _, rhs = integral.matrix_rhs(g, {"param": param})

            p = sps.linalg.spsolve(M, rhs)

            mass = pp.P1MassMatrix(physics="flow")
            M = mass.matrix(g, {"param": param})

            error = np.sum(M.dot(np.abs(p - p_ex(g.nodes))))
            self.assertTrue(np.isclose(error, known_error))
Exemple #5
0
    def test_p1_1d_iso_line(self):
        g = pp.structured.CartGrid(3, 1)
        R = cg.rot(np.pi / 6., [0, 0, 1])
        g.nodes = np.dot(R, g.nodes)
        g.compute_geometry()

        kxx = np.ones(g.num_cells)
        perm = pp.SecondOrderTensor(3, kxx, kyy=1, kzz=1)
        perm.rotate(R)

        bn = g.get_boundary_nodes()
        bc = pp.BoundaryConditionNode(g, bn, ["dir", "neu"])
        solver = pp.P1(physics="flow")

        param = pp.Parameters(g)
        param.set_tensor(solver, perm)
        param.set_bc(solver, bc)
        M = solver.matrix(g, {"param": param}).todense()

        # Matrix computed with an already validated code
        M_known = np.matrix(
            [
                [1., 0., 0., 0.],
                [-3., 6., -3., 0.],
                [0., -3., 6., -3.],
                [0., 0., -3., 3.],
            ]
        )

        self.assertTrue(np.allclose(M, M_known))

        solver = pp.P1MassMatrix(physics="flow")
        M = solver.matrix(g, {"param": param}).todense()

        M_known = (
            np.matrix(
                [[0., 0., 0., 0.], [1., 4., 1., 0.], [0., 1., 4., 1.], [0., 0., 1., 2.]]
            )
            / 18.
        )

        self.assertTrue(np.allclose(M, M_known))
Exemple #6
0
    def test_p1_3d(self):

        g = pp.simplex.StructuredTetrahedralGrid([1, 1, 1], [1, 1, 1])
        g.compute_geometry()

        kxx = np.ones(g.num_cells)
        perm = pp.SecondOrderTensor(3, kxx=kxx, kyy=kxx, kzz=kxx)

        bn = g.get_boundary_nodes()
        bc = pp.BoundaryConditionNode(g, bn, bn.size * ["neu"])
        solver = pp.P1(physics="flow")

        param = pp.Parameters(g)
        param.set_tensor(solver, perm)
        param.set_bc(solver, bc)
        M = solver.matrix(g, {"param": param}).todense()

        M_known = matrix_for_test_p1_3d()

        self.assertTrue(np.allclose(M, M.T))
        self.assertTrue(np.allclose(M, M_known))

        solver = pp.P1MassMatrix(physics="flow")
        M = solver.matrix(g, {"param": param}).todense()

        M_known = (
            np.matrix(
                [
                    [1., 0.5, 0.5, 0., 0.5, 0., 0., 0.],
                    [0.5, 5., 1.5, 1., 1.5, 1., 2., 0.],
                    [0.5, 1.5, 3., 0.5, 1., 0., 1., 0.],
                    [0., 1., 0.5, 3., 0., 1., 1.5, 0.5],
                    [0.5, 1.5, 1., 0., 3., 0.5, 1., 0.],
                    [0., 1., 0., 1., 0.5, 3., 1.5, 0.5],
                    [0., 2., 1., 1.5, 1., 1.5, 5., 0.5],
                    [0., 0., 0., 0.5, 0., 0.5, 0.5, 1.],
                ]
            )
            / 60.
        )

        self.assertTrue(np.allclose(M, M_known))