Exemple #1
0
    def __init__(self, params: dict):
        self.start_coords = GeoLocation.from_degrees(
            params['start']['center']['lat'], params['start']['center']['lng'])
        self.end_coords = GeoLocation.from_degrees(
            params['end']['center']['lat'], params['end']['center']['lng'])
        self.start_magnitude = params['start']['intensity']
        self.end_magnitude = params['end']['intensity']
        self.start_radius = params['start']['radius']
        self.end_radius = params['end']['radius']

        self.N_POINTS = 10
    def construct_settlement_view_from_parts(self):
        print("Building settlement view from parts...")
        graph_settlement_view = nx.Graph()

        # first we'll read all the cities -- our RED nodes, and store them as nodes into the settlement_view
        settlement_df = pd.read_csv(f"{self.DATA_DIR}/cal.csv")
        settlement_df.sort_values(by='population',
                                  ascending=False,
                                  inplace=True)

        for index, city in settlement_df.iterrows():
            graph_settlement_view.add_node(city['id'],
                                           pos=GeoLocation.from_degrees(
                                               float(city['lat']),
                                               float(city['lng'])),
                                           name=city['city'],
                                           population=city['population'])
        print(f"Read {graph_settlement_view.number_of_nodes()} red nodes.")

        # now let's read the parts
        parts = [
            nx.read_gpickle(
                f"{self.DATA_DIR}/settlement_parts/graph_settlement_view_0.gpickle"
            ),
            nx.read_gpickle(
                f"{self.DATA_DIR}/settlement_parts/graph_settlement_view_1.gpickle"
            ),
            nx.read_gpickle(
                f"{self.DATA_DIR}/settlement_parts/graph_settlement_view_2.gpickle"
            ),
            nx.read_gpickle(
                f"{self.DATA_DIR}/settlement_parts/graph_settlement_view_3.gpickle"
            ),
            nx.read_gpickle(
                f"{self.DATA_DIR}/settlement_parts/graph_settlement_view_4.gpickle"
            )
        ]

        for part in parts:
            for u, v, a in part.edges(data=True):
                # print(u, v, a)
                # import sys; sys.exit();
                graph_settlement_view.add_edge(u,
                                               v,
                                               blue_nodes=a['blue_nodes'])
            print(f"{graph_settlement_view.number_of_nodes()} nodes and "
                  f"{graph_settlement_view.number_of_edges()} edges.")

        nx.write_gpickle(graph_settlement_view,
                         f"{self.DATA_DIR}/graph_settlement_view.gpickle")
        self.graph_settlement_view = graph_settlement_view
    def construct_segment_view(self):
        print("Building segment view...")
        graph_segment_view = nx.Graph()
        with open(f"{self.DATA_DIR}/cal.cnode.csv") as f:
            for row in csv.reader(f):
                lat = float(row[2])
                lng = float(row[1])
                node_id = row[0]
                graph_segment_view.add_node(node_id,
                                            pos=GeoLocation.from_degrees(
                                                lat, lng),
                                            mappedToCity=False)

        with open(f"{self.DATA_DIR}/cal.cedge.csv") as f:
            for row in csv.reader(f):
                graph_segment_view.add_edge(row[1], row[2], d=row[3])

        nx.write_gpickle(graph_segment_view,
                         f"{self.DATA_DIR}/graph_segment_view.gpickle")
        self.graph_segment_view = graph_segment_view
        print("Done")
        print(graph_segment_view.number_of_nodes(), "blue segments.")
        print(graph_segment_view.number_of_edges(), "blue edges.")
Exemple #4
0
    def get_disaster_magnitudes_for_coordinates(self, coordinates):
        multi_magnitudes = []
        lat_increment = (self.end_coords.deg_lat -
                         self.start_coords.deg_lat) / self.N_POINTS
        long_increment = (self.end_coords.deg_lon -
                          self.start_coords.deg_lon) / self.N_POINTS
        magnitude_increment = (self.end_magnitude -
                               self.start_magnitude) / self.N_POINTS
        radius_increment = (self.end_radius -
                            self.start_radius) / self.N_POINTS
        for i in range(self.N_POINTS + 1):
            center = GeoLocation.from_degrees(
                self.start_coords.deg_lat + i * lat_increment,
                self.start_coords.deg_lon + i * long_increment)
            magnitude = self.start_magnitude + i * magnitude_increment
            radius = self.start_radius + i * radius_increment

            distances = np.array(
                [center.distance_to(coordinate) for coordinate in coordinates])
            multi_magnitudes.append(magnitude *
                                    np.exp(-np.multiply(distances, distances) /
                                           (2 * radius * radius)))
            # could instead use a bounded inverse linear function, i.e. min(radius/distance, 1)
        return np.max(np.array(multi_magnitudes), axis=0)
    def construct_tile_view(self):
        print("Building tile view...")
        graph_segment_view = nx.read_gpickle(
            f"{self.DATA_DIR}/graph_segment_view.gpickle")
        graph_tile_view = nx.Graph()

        min_lat = 400
        max_lat = -400
        min_lng = 400
        max_lng = -400
        with open(f"{self.DATA_DIR}/cal.cnode.csv") as f:
            for row in csv.reader(f):
                lat = float(row[2])
                lng = float(row[1])
                min_lat = min(lat, min_lat)
                max_lat = max(lat, max_lat)
                min_lng = min(lng, min_lng)
                max_lng = max(lng, max_lng)
        print(
            f"min_lat: {min_lat} \tmax_lat: {max_lat} \tmin_lng: {min_lng} \tmax_lng: {max_lng} \t"
        )

        delta = 0.01

        # just some small utility functions
        def get_tile_id(_lat, _lng):
            return (math.floor(
                (_lat - min_lat) / delta), math.floor(
                    (_lng - min_lng) / delta))

        max_tile_i, max_tile_j = get_tile_id(max_lat, max_lng)
        for i in range(max_tile_i + 1):
            for j in range(max_tile_j + 1):
                sw_loc = GeoLocation.from_degrees(min_lat + i * delta,
                                                  min_lng + j * delta)
                ne_loc = GeoLocation.from_degrees(min_lat + (i + 1) * delta,
                                                  min_lng + (j + 1) * delta)
                center_loc = GeoLocation.from_degrees(min_lat + i * delta / 2,
                                                      min_lng + j * delta / 2)
                graph_tile_view.add_node((i, j),
                                         sw_loc=sw_loc,
                                         ne_loc=ne_loc,
                                         center_loc=center_loc,
                                         segment_nodes=set(),
                                         segment_edges=set())

        # now we assign blue nodes to tiles they belong to
        blue_nodes = graph_segment_view.nodes(data=True)
        for node, attr in blue_nodes:
            location = attr['pos']
            tile_id = get_tile_id(location.deg_lat, location.deg_lon)
            graph_tile_view.nodes[tile_id]['segment_nodes'].append(node)

        # now we assign blue edges to tiles
        # we should ideally take all the tiles along the line joining u to v, then add a segment edge to all those
        # tiles. But no big deal
        for u, v in graph_segment_view.edges():
            location = blue_nodes[u]['pos']
            tile1 = get_tile_id(location.deg_lat, location.deg_lon)

            location = blue_nodes[v]['pos']
            tile2 = get_tile_id(location.deg_lat, location.deg_lon)

            graph_tile_view.nodes[tile1]['segment_edges'].append((u, v))

            if tile1 != tile2:
                graph_tile_view.nodes[tile2]['segment_edges'].append((u, v))

        # we need to delete those tiles that don't contain any roads at all. Would greatly speed up computation

        node_indices = []
        segment_lengths = []
        for node, attr in graph_tile_view.nodes(data=True):
            node_indices.append(node)
            segment_lengths.append(len(attr['segment_nodes']))
        for node, length in zip(node_indices, segment_lengths):
            if length == 0:
                graph_tile_view.remove_node(node)

        nx.write_gpickle(graph_tile_view,
                         f"{self.DATA_DIR}/graph_tile_view.gpickle")
        self.graph_tile_view = graph_tile_view
        print(f"Done! Created {graph_tile_view.number_of_nodes()} tiles.")
    def construct_settlement_view_using_combined_nodes(self):
        print("Building settlement view...")
        graph_settlement_view = nx.Graph()

        # first we'll read all the cities -- our RED nodes, and store them as nodes into the settlement_view
        settlement_df = pd.read_csv(f"{self.DATA_DIR}/cal.csv")
        settlement_df.sort_values(by='population',
                                  ascending=False,
                                  inplace=True)

        for index, city in settlement_df.iterrows():
            graph_settlement_view.add_node(city['id'],
                                           pos=GeoLocation.from_degrees(
                                               float(city['lat']),
                                               float(city['lng'])),
                                           name=city['city'],
                                           population=city['population'])
        print(f"Read {graph_settlement_view.number_of_nodes()} red nodes.")

        # now, we'll combine all blue nodes within city perimeters into a single node
        graph_segment_view_nodes_combined = self.get_combined_nodes_within_city_perimeter(
            True)
        print(
            f"Read {graph_segment_view_nodes_combined.number_of_nodes()} merged blue nodes."
        )

        # we'll also combine all blue nodes which have just two neighbors
        graph_segment_two_neighbor_combined_nodes = self.get_two_neighbor_combined_nodes(
            True)
        print(
            f"Read {graph_segment_two_neighbor_combined_nodes.number_of_nodes()} merged blue nodes."
        )

        # we'll do the same again
        graph_segment_four_neighbor_combined_nodes = self.get_four_neighbor_combined_nodes(
            True)
        print(
            f"Read {graph_segment_four_neighbor_combined_nodes.number_of_nodes()} merged blue nodes."
        )

        # for every red node u,
        #     for every red node v:
        #         remove all red nodes other than u and v
        #         find shortest blue path between u and v
        #         add red edge between u and v
        all_red_nodes = list(graph_settlement_view.nodes())

        import time
        start = time.time()
        print(f"Start: {start}")

        red_node_degrees = dict()
        red_nodes_with_edges = list()
        for red_node in all_red_nodes:
            red_node_degrees[
                red_node] = graph_segment_four_neighbor_combined_nodes.degree(
                    red_node)
            if red_node_degrees[red_node]:
                red_nodes_with_edges.append(red_node)

        # for u, v in combinations(all_red_nodes, 2):
        for i, u in enumerate(red_nodes_with_edges):
            for j, v in enumerate(red_nodes_with_edges[i + 1:]):
                print(f"\r{i}x{j} / {len(red_nodes_with_edges)}", end="")
                graph_segment_view_other_nodes_removed = graph_segment_four_neighbor_combined_nodes.copy(
                )
                for red_node in red_nodes_with_edges:
                    if red_node not in [u, v]:
                        graph_segment_view_other_nodes_removed.remove_node(
                            red_node)
                if nx.has_path(graph_segment_view_other_nodes_removed, u, v):
                    path = nx.shortest_path(
                        graph_segment_view_other_nodes_removed, u, v)
                    graph_settlement_view.add_edge(u, v, blue_nodes=path)
            print(f"\tDuration: {time.time() - start}", end="")

        nx.write_gpickle(graph_settlement_view,
                         f"{self.DATA_DIR}/graph_settlement_view.gpickle")
        self.graph_settlement_view = graph_settlement_view
    def get_combined_nodes_within_city_perimeter(self, read_from_file=False):
        if read_from_file:
            return nx.read_gpickle(
                f"{self.DATA_DIR}/graph_segment_view_nodes_combined.gpickle")

        settlement_df = pd.read_csv(f"{self.DATA_DIR}/cal.csv")

        # sort by population -> larger cities will get to pick the blue nodes first.
        settlement_df.sort_values(by='population',
                                  ascending=False,
                                  inplace=True)

        graph_segment_view = nx.read_gpickle(
            f"{self.DATA_DIR}/graph_segment_view.gpickle")
        graph_segment_view_nodes_combined = graph_segment_view.copy()

        # let's start
        print("Merging blue nodes...")
        print(
            f"Started with {graph_segment_view_nodes_combined.number_of_nodes()} blue segments."
        )
        counter, num_cities = 0, len(
            settlement_df)  # just so we can keep tabs in the console
        for index, city in settlement_df.iterrows():
            counter += 1
            print(
                f"\r{counter}/{num_cities} :: {city['city']}                    ",
                end="")

            city_location = GeoLocation.from_degrees(float(city['lat']),
                                                     float(city['lng']))
            sw_bound, ne_bound = city_location.bounding_locations(
                self.CITY_PERIMETER)

            # first we'll add a blue node that will represent the entire city
            graph_segment_view_nodes_combined.add_node(
                city['id'],
                pos=GeoLocation.from_degrees(float(city['lat']),
                                             float(city['lng'])),
                mappedToCity=True)
            representative_node = city['id']

            # now we will combine all blue nodes that fall within the city perimeters
            for node_id, blue_node in graph_segment_view_nodes_combined.nodes(
                    data=True):
                try:
                    if blue_node['mappedToCity']:
                        continue
                except KeyError:
                    pass
                # try:
                if blue_node['pos'].within_bounds(sw_bound, ne_bound):
                    graph_segment_view_nodes_combined = nx.contracted_nodes(
                        graph_segment_view_nodes_combined,
                        representative_node,
                        str(node_id),
                        self_loops=False)

                    # when we merge nodes, it stores all the properties of the previous node too.
                    # this can get very long. and we don't need it anyway. therefore we clear this field.
                    graph_segment_view_nodes_combined.nodes[
                        representative_node]['contraction'] = {}
                # except:
                #     print(blue_node)

        # we're done! let's finally write the graph into a file
        nx.write_gpickle(
            graph_segment_view_nodes_combined,
            f"{self.DATA_DIR}/graph_segment_view_nodes_combined.gpickle")

        print(
            f"\nAfter merging we have {graph_segment_view_nodes_combined.number_of_nodes()} blue segments."
        )

        return graph_segment_view_nodes_combined
 def __init__(self, params: dict):
     self.epicenter_coords = GeoLocation.from_degrees(
         params['center']['lat'], params['center']['lng'])
     self.magnitude = params['intensity']
     self.sigma_radius = params['radius']