def main(inp_fname, move_info_fname, output_fname): inp, move_info = getData(inp_fname, move_info_fname) fw = open(output_fname, "w") for txt, player in zip(inp, move_info): out = postprocess.postProcess(txt, player=player) fw.write(out + "\n") fw.close()
def predict(): # Pre-process Data print('Started predict') sm9_data_with_RITM, sm9_data_without_RITM = preprocess.getSM9TestData( os.path.join(path.DIR_NAME, path.SM9_TEST_DATA)) sn_data = preprocess.getServiceNowTestData( os.path.join(path.DIR_NAME, path.SERVICE_NOW_TEST_DATA)) merged_data_with_cat_item, merged_data_without_cat_item = preprocess.mergeTestData( sm9_data_with_RITM, sn_data) sm9_data_without_RITM, merged_data_without_cat_item = preprocess.prepareDataByRBCTitle( sm9_data_without_RITM, merged_data_without_cat_item) # sm9_data_without_RITM = sm9_data_without_RITM[['RBC Line Item Title']] # merged_data_without_cat_item = merged_data_without_cat_item[['RBC Line Item Title']] tickets_by_title = pd.concat( [sm9_data_without_RITM, merged_data_without_cat_item]) sorted_analyst_prob_by_item = predictModelByCatItem( merged_data_with_cat_item['cat_item'], os.path.join(path.DIR_NAME, path.CAT_ITEM_MODEL), os.path.join(path.DIR_NAME, path.COUNT_VEC_CAT_ITEM)) cat_item_ticket_recommendations = postprocess.postProcess( sorted_analyst_prob_by_item, merged_data_with_cat_item) sorted_analyst_prob_by_title = predictModelByTitle( tickets_by_title['RBC Line Item Title'], os.path.join(path.DIR_NAME, path.RBC_TITLE_MODEL), os.path.join(path.DIR_NAME, path.COUNT_VEC_BY_TITLE)) rbc_title_ticket_recommendations = postprocess.postProcess( sorted_analyst_prob_by_title, tickets_by_title) ticket_recommendations = pd.concat( [cat_item_ticket_recommendations, rbc_title_ticket_recommendations]) recommendations = "tickets_recommendations_" + datetime.datetime.today( ).strftime('%Y-%m-%d') + ".xlsx" filename = os.path.join(path.DIR_NAME, path.RECOMMENDATIONS_DIR, recommendations) # filename = "tickets_recommendation_" + datetime.datetime.now().isoformat() + ".xlsx" # Prefarably save as excel # ticket_recommendations.to_csv(path_or_buf=filename , encoding="Latin-1" , index = False) # ticket_recommendations.to_excel(path_or_buf=filename , index = False) # Save as excel writer = pd.ExcelWriter(filename, engine='xlsxwriter') ticket_recommendations.to_excel(writer, 'Sheet1', index=False) writer.save() print('Ended predict')
def compute(pool, namespace=''): # 5th pass: High-level descriptors that depend on others, but we # don't need to stream the audio anymore # Average Level from level import levelAverage levelAverage(pool, namespace) # SFX Descriptors sfxPitch(pool, namespace) # Tuning System Features tuningSystemFeatures(pool, namespace) # Pool Cleaning (removing temporary descriptors): tonalPoolCleaning(pool, namespace) # Add missing descriptors which are not computed yet, but will be for the # final release or during the 1.x cycle. However, the schema need to be # complete before that, so just put default values for these. postProcess(pool, namespace)