def pmin_constraints(scenario, epsilon=1e-3): """Identify time periods in which generators are at minimum power. :param powersimdata.scenario.scenario.Scenario scenario: scenario instance. :param float epsilon: allowable 'fuzz' for whether constraint is binding. :return: (*pandas.DataFrame*) -- boolean data frame of same shape as PG. """ _check_scenario_is_in_analyze_state(scenario) _check_epsilon(epsilon) pg = scenario.state.get_pg() grid = scenario.state.get_grid() pmin = grid.plant["Pmin"] binding_pmin_constraints = (pg - pmin) <= epsilon return binding_pmin_constraints
def ramp_constraints(scenario, epsilon=1e-3): """Identify time periods in which generators have binding ramp constraints. :param powersimdata.scenario.scenario.Scenario scenario: scenario instance. :param float epsilon: allowable 'fuzz' for whether constraint is binding. :return: (*pandas.DataFrame*) -- boolean data frame of same shape as PG. .. note:: The first time period will always return ``False`` for each column. """ _check_scenario_is_in_analyze_state(scenario) _check_epsilon(epsilon) pg = scenario.state.get_pg() grid = scenario.state.get_grid() ramp = grid.plant["ramp_30"] diff = pg.diff(axis=0) binding_ramp_constraints = (ramp * 2 - abs(diff)) <= epsilon return binding_ramp_constraints
def test_bad_value(self): with self.assertRaises(ValueError): _check_epsilon(-0.001)
def test_zero(self): _check_epsilon(0)
def test_bad_type(self): with self.assertRaises(TypeError): _check_epsilon("0.001")
def test_good_int_value(self): _check_epsilon(1)
def test_good_float_value(self): _check_epsilon(5e-4)
def test_check_epsilon(): _check_epsilon(1e-2) _check_epsilon(0.001)
def test_check_epsilon_argument_value(): with pytest.raises(ValueError): _check_epsilon(-0.00001)
def test_check_epsilon_argument_type(): arg = ("1e-3", [0.0001]) for a in arg: with pytest.raises(TypeError): _check_epsilon()