# #!/usr/bin/env python # # -*- coding: utf-8 -*- # # ''' # Created on 26 Jul 2019 # # @author: Ajay # ''' # from pp_final import preprocessor from sklearn.naive_bayes import MultinomialNB #GOAL=0.74 pp = preprocessor("sentiment", "mysentiment") clf = MultinomialNB(alpha=1.1) model = clf.fit(pp.X_train, pp.y_train) predicted_y = model.predict(pp.X_test) i = pp.divider for y in predicted_y: print(pp.instance_array[i], y) i = i + 1 # i = 0 # for sentence in test_array: # test = count.transform([sentence]).toarray() # print(instance_array[i], model.predict(test)) # i = i + 1 # text_data = np.array(test_array) # bag_of_words = count.fit_transform(text_data)
# #!/usr/bin/env python # # -*- coding: utf-8 -*- # # ''' # Created on 26 Jul 2019 # # @author: Ajay # ''' # from pp_final import preprocessor from sklearn.naive_bayes import MultinomialNB # pp = preprocessor("topic", "mnb") clf = MultinomialNB() model = clf.fit(pp.X_train, pp.y_train) predicted_y = model.predict(pp.X_test) i = pp.divider for y in predicted_y: print(pp.instance_array[i], y) i = i + 1
# #!/usr/bin/env python # # -*- coding: utf-8 -*- # # ''' # Created on 26 Jul 2019 # # @author: Ajay # ''' # from pp_final import preprocessor from sklearn import tree pp = preprocessor("sentiment", "dt") clf = tree.DecisionTreeClassifier(criterion='entropy', random_state=0, min_samples_leaf=20) model = clf.fit(pp.X_train, pp.y_train) predicted_y = model.predict(pp.X_test) i = pp.divider for y in predicted_y: print(pp.instance_array[i], y) i = i + 1 #
# #!/usr/bin/env python # # -*- coding: utf-8 -*- # # ''' # Created on 26 Jul 2019 # # @author: Ajay # ''' # from pp_final import preprocessor from sklearn.naive_bayes import MultinomialNB #GOAL=0.74 pp = preprocessor("topic", "mytopic") clf = MultinomialNB(alpha=.77) model = clf.fit(pp.X_train, pp.y_train) predicted_y = model.predict(pp.X_test) i = pp.divider for y in predicted_y: print(pp.instance_array[i], y) i = i + 1 #
# #!/usr/bin/env python # # -*- coding: utf-8 -*- # # ''' # Created on 26 Jul 2019 # # @author: Ajay # ''' # from pp_final import preprocessor from sklearn.naive_bayes import BernoulliNB pp = preprocessor("sentiment", "bnb") clf = BernoulliNB() model = clf.fit(pp.X_train, pp.y_train) predicted_y = model.predict(pp.X_test) i = pp.divider for y in predicted_y: print(pp.instance_array[i], y) i = i + 1 #
# #!/usr/bin/env python # # -*- coding: utf-8 -*- # # ''' # Created on 26 Jul 2019 # # @author: Ajay # ''' # from pp_final import preprocessor from sklearn import tree pp = preprocessor("topic", "dt") clf = tree.DecisionTreeClassifier(criterion='entropy', random_state=0, min_samples_leaf=20) model = clf.fit(pp.X_train, pp.y_train) predicted_y = model.predict(pp.X_test) i = pp.divider for y in predicted_y: print(pp.instance_array[i], y) i = i + 1 #