Exemple #1
0
def get_singleyr_data(fc_tripshedpoly, projtyp, adt, out_dict={}):
    print("getting accessibility data for base...")
    accdata = acc.get_acc_data(fc_tripshedpoly, p.accdata_fc, projtyp, get_ej=False)
        
    print("getting ag acreage data for base...")
    ag_acres = luac.get_lutype_acreage(fc_tripshedpoly, projtyp, p.parcel_poly_fc, p.lutype_ag)
    
    # total job + du density (base year only, for state-of-good-repair proj eval only)
    print("getting ILUT data for base...")
    job_du_dens = lu_pt_buff.point_sum_density(p.parcel_pt_fc, fc_tripshedpoly, projtyp, 
                                               [p.col_emptot, p.col_du], p.ilut_sum_buffdist)
    comb_du_dens = sum(list(job_du_dens.values()))
    job_du_dens['job_du_perNetAcre'] = comb_du_dens

    # get EJ data
    print("getting EJ data for base...")
    ej_data = lu_pt_buff.point_sum(p.parcel_pt_fc, fc_tripshedpoly, projtyp, [p.col_pop_ilut],
                                            p.ilut_sum_buffdist, p.col_ej_ind, case_excs_list=[])
    
    ej_flag_dict = {0: "Pop_NonEJArea", 1: "Pop_EJArea"}  # rename keys from 0/1 to more human-readable names
    ej_data = utils.rename_dict_keys(ej_data, ej_flag_dict)
    ej_data["Pct_PopEJArea"] = ej_data["Pop_EJArea"] / sum(list(ej_data.values()))
    
    accdata_ej = acc.get_acc_data(fc_tripshedpoly, p.accdata_fc, projtyp, get_ej=True)  # EJ accessibility data
    ej_data.update(accdata_ej)

    # for base dict, add items that only have a base year value (no future year values)
    for d in [accdata, ag_acres, job_du_dens, ej_data]:
        out_dict_base.update(d)

    outdf = pd.DataFrame.from_dict(out_dict_base, orient='index')
    
    return outdf
Exemple #2
0
def get_singleyr_data(fc_project, projtyp, adt, posted_speedlim, out_dict={}):
    
    pcl_pt_fc = p.parcel_pt_fc_yr(2016)
    pcl_poly_fc = p.parcel_poly_fc_yr(2016)
    
    accdata = acc.get_acc_data(fc_project, p.accdata_fc, projtyp, get_ej=False)
    
    collision_data = coll.get_collision_data(fc_project, projtyp, p.collisions_fc, adt)

    complete_street_score = {'complete_street_score': -1} if projtyp == p.ptype_fwy else \
        cs.complete_streets_idx(pcl_pt_fc, fc_project, projtyp, posted_speedlim, p.trn_svc_fc)
        
    truck_route_pct = {'pct_proj_STAATruckRoutes': 1} if projtyp == p.ptype_fwy else \
        linex.get_line_overlap(fc_project, p.freight_route_fc, p.freight_route_fc) # all freeways are STAA truck routes
        
    ag_acres = luac.get_lutype_acreage(fc_project, projtyp, pcl_poly_fc, p.lutype_ag)
    
    pct_adt_truck = {"pct_truck_aadt": -1} if projtyp != p.ptype_fwy else truck_fwy.get_tmc_truck_data(fc_project, projtyp)
    
    intersxn_data = intsxn.intersection_density(fc_project, p.intersections_base_fc, projtyp)
    
    npmrds_data = npmrds.get_npmrds_data(fc_project, projtyp)
    
    transit_data = trnsvc.transit_svc_density(fc_project, p.trn_svc_fc, projtyp)
    
    bikeway_data = bnmi.get_bikeway_mileage_share(fc_project, p.ptype_sgr)
    
    infill_status = urbn.projarea_infill_status(fc_project, p.comm_types_fc)
    
    
    # total job + du density (base year only, for state-of-good-repair proj eval only)
    job_du_dens = lu_pt_buff.point_sum_density(pcl_pt_fc, fc_project, projtyp, 
                                               [p.col_emptot, p.col_du], p.ilut_sum_buffdist)
    comb_du_dens = sum(list(job_du_dens.values()))
    job_du_dens['job_du_perNetAcre'] = comb_du_dens

    # get EJ data
    ej_data = lu_pt_buff.point_sum(pcl_pt_fc, fc_project, projtyp, [p.col_pop_ilut],
                                            p.ilut_sum_buffdist, p.col_ej_ind, case_excs_list=[])
    
    ej_flag_dict = {0: "Pop_NonEJArea", 1: "Pop_EJArea"}  # rename keys from 0/1 to more human-readable names
    ej_data = utils.rename_dict_keys(ej_data, ej_flag_dict)
    ej_data["Pct_PopEJArea"] = ej_data["Pop_EJArea"] / sum(list(ej_data.values()))
    
    accdata_ej = acc.get_acc_data(fc_project, p.accdata_fc, projtyp, get_ej=True)  # EJ accessibility data
    ej_data.update(accdata_ej)

    # for base dict, add items that only have a base year value (no future year values)
    for d in [accdata, collision_data, complete_street_score, truck_route_pct, pct_adt_truck, ag_acres, intersxn_data,
              npmrds_data, transit_data, bikeway_data, infill_status, job_du_dens, ej_data]:
        out_dict_base.update(d)

    outdf = pd.DataFrame.from_dict(out_dict_base, orient='index')
    
    return outdf
Exemple #3
0
    comb_du_dens = sum(list(job_du_dens.values()))
    job_du_dens['job_du_perNetAcre'] = comb_du_dens

    # get EJ data
    ej_data = lu_pt_buff.point_sum(p.parcel_pt_fc,
                                   project_fc,
                                   project_type, [p.col_pop_ilut],
                                   p.ilut_sum_buffdist,
                                   p.col_ej_ind,
                                   case_excs_list=[])

    ej_flag_dict = {
        0: "Pop_NonEJArea",
        1: "Pop_EJArea"
    }  # rename keys from 0/1 to more human-readable names
    ej_data = utils.rename_dict_keys(ej_data, ej_flag_dict)
    ej_data["Pct_PopEJArea"] = ej_data["Pop_EJArea"] / sum(
        list(ej_data.values()))

    accdata_ej = acc.get_acc_data(project_fc,
                                  p.accdata_fc,
                                  project_type,
                                  get_ej=True)  # EJ accessibility data
    ej_data.update(accdata_ej)

    # for base dict, add items that only have a base year value (no future year values)
    for d in [
            accdata, collision_data, complete_street_score, truck_route_pct,
            pct_adt_truck, ag_acres, intersxn_data, npmrds_data, transit_data,
            bikeway_data, infill_status, job_du_dens, ej_data
    ]: