def main(): config = load_config(FLAGS.config) merge_config(FLAGS.opt) char_ops = CharacterOps(config['Global']) config['Global']['char_num'] = char_ops.get_char_num() # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] check_gpu(use_gpu) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) rec_model = create_module( config['Architecture']['function'])(params=config) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): eval_outputs = rec_model(mode="test") eval_fetch_list = [v.name for v in eval_outputs] eval_prog = eval_prog.clone(for_test=True) exe.run(startup_prog) pretrain_weights = config['Global']['pretrain_weights'] if pretrain_weights is not None: fluid.load(eval_prog, pretrain_weights) test_img_path = config['test_img_path'] image_shape = config['Global']['image_shape'] blobs = test_reader(image_shape, test_img_path) predict = exe.run(program=eval_prog, feed={"image": blobs}, fetch_list=eval_fetch_list, return_numpy=False) preds = np.array(predict[0]) if preds.shape[1] == 1: preds = preds.reshape(-1) preds_lod = predict[0].lod()[0] preds_text = char_ops.decode(preds) else: end_pos = np.where(preds[0, :] == 1)[0] if len(end_pos) <= 1: preds_text = preds[0, 1:] else: preds_text = preds[0, 1:end_pos[1]] preds_text = preds_text.reshape(-1) preds_text = char_ops.decode(preds_text) fluid.io.save_inference_model("./output/", feeded_var_names=['image'], target_vars=eval_outputs, executor=exe, main_program=eval_prog, model_filename="model", params_filename="params") print(preds) print(preds_text)
def test_reader(): config = load_config(FLAGS.config) merge_config(FLAGS.opt) print(config) tmp_reader = reader.test_reader(config=config) count = 0 print_count = 0 import time starttime = time.time() for data in tmp_reader(): count += len(data) print_count += 1 if print_count % 10 == 0: batch_time = (time.time() - starttime) / print_count print("reader:", count, len(data), batch_time) print("finish reader:", count) print("success")
def main(): config = load_config(FLAGS.config) merge_config(FLAGS.opt) print(config) # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] check_gpu(use_gpu) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) det_model = create_module(config['Architecture']['function'])(params=config) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): eval_loader, eval_outputs = det_model(mode="test") eval_fetch_list = [v.name for v in eval_outputs] eval_prog = eval_prog.clone(for_test=True) exe.run(startup_prog) pretrain_weights = config['Global']['pretrain_weights'] if pretrain_weights is not None: load_pretrain(exe, eval_prog, pretrain_weights) # fluid.load(eval_prog, pretrain_weights) # def if_exist(var): # return os.path.exists(os.path.join(pretrain_weights, var.name)) # fluid.io.load_vars(exe, pretrain_weights, predicate=if_exist, main_program=eval_prog) else: logger.info("Not find pretrain_weights:%s" % pretrain_weights) sys.exit(0) # fluid.io.save_inference_model("./output/", feeded_var_names=['image'], # target_vars=eval_outputs, executor=exe, main_program=eval_prog, # model_filename="model", params_filename="params") # sys.exit(-1) metrics = eval_det_run(exe, eval_prog, eval_fetch_list, config, "test") logger.info("metrics:{}".format(metrics)) logger.info("success!")
def test_reader(): config = load_config(FLAGS.config) merge_config(FLAGS.opt) char_ops = CharacterOps(config['Global']) config['Global']['char_num'] = char_ops.get_char_num() print(config) # tmp_reader = reader.train_eval_reader( # config=cfg, char_ops=char_ops, mode="train") tmp_reader = reader.train_eval_reader(config=config, char_ops=char_ops, mode="eval") count = 0 print_count = 0 import time starttime = time.time() for data in tmp_reader(): count += len(data) print_count += 1 if print_count % 10 == 0: batch_time = (time.time() - starttime) / print_count print("reader:", count, len(data), batch_time) print("finish reader:", count) print("success")
def main(): config = load_config(FLAGS.config) merge_config(FLAGS.opt) char_ops = CharacterOps(config['Global']) config['Global']['char_num'] = char_ops.get_char_num() # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] check_gpu(use_gpu) if use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) rec_model = create_module( config['Architecture']['function'])(params=config) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): eval_loader, eval_outputs = rec_model(mode="eval") eval_fetch_list = [v.name for v in eval_outputs] eval_prog = eval_prog.clone(for_test=True) exe.run(startup_prog) pretrain_weights = config['Global']['pretrain_weights'] if pretrain_weights is not None: fluid.load(eval_prog, pretrain_weights) eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867',\ 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'] eval_data_dir = config['TestReader']['lmdb_sets_dir'] total_forward_time = 0 total_evaluation_data_number = 0 total_correct_number = 0 eval_data_acc_info = {} for eval_data in eval_data_list: config['TestReader']['lmdb_sets_dir'] = \ eval_data_dir + "/" + eval_data eval_reader = reader.train_eval_reader(config=config, char_ops=char_ops, mode="test") eval_loader.set_sample_list_generator(eval_reader, places=place) start_time = time.time() outs = eval_run(exe, eval_prog, eval_loader, eval_fetch_list, char_ops, "best", "test") infer_time = time.time() - start_time eval_acc, acc_num, sample_num = outs total_forward_time += infer_time total_evaluation_data_number += sample_num total_correct_number += acc_num eval_data_acc_info[eval_data] = outs avg_forward_time = total_forward_time / total_evaluation_data_number avg_acc = total_correct_number * 1.0 / total_evaluation_data_number logger.info('-' * 50) strs = "" for eval_data in eval_data_list: eval_acc, acc_num, sample_num = eval_data_acc_info[eval_data] strs += "\n {}, accuracy:{:.6f}".format(eval_data, eval_acc) strs += "\n average, accuracy:{:.6f}, time:{:.6f}".format( avg_acc, avg_forward_time) logger.info(strs) logger.info('-' * 50)
def main(): config = load_config(FLAGS.config) merge_config(FLAGS.opt) print(config) # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] check_gpu(use_gpu) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) det_model = create_module(config['Architecture']['function'])(params=config) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): eval_outputs = det_model(mode="test") eval_fetch_list = [v.name for v in eval_outputs] eval_prog = eval_prog.clone(for_test=True) exe.run(startup_prog) pretrain_weights = config['Global']['pretrain_weights'] if pretrain_weights is not None: fluid.load(eval_prog, pretrain_weights) else: logger.info("Not find pretrain_weights:%s" % pretrain_weights) sys.exit(0) save_res_path = config['Global']['save_res_path'] with open(save_res_path, "wb") as fout: test_reader = reader.test_reader(config=config) tackling_num = 0 for data in test_reader(): img_num = len(data) tackling_num = tackling_num + img_num logger.info("tackling_num:%d", tackling_num) img_list = [] ratio_list = [] img_name_list = [] for ino in range(img_num): img_list.append(data[ino][0]) ratio_list.append(data[ino][1]) img_name_list.append(data[ino][2]) img_list = np.concatenate(img_list, axis=0) outs = exe.run(eval_prog,\ feed={'image': img_list},\ fetch_list=eval_fetch_list) global_params = config['Global'] postprocess_params = deepcopy(config["PostProcess"]) postprocess_params.update(global_params) postprocess = create_module(postprocess_params['function'])\ (params=postprocess_params) dt_boxes_list = postprocess(outs, ratio_list) for ino in range(img_num): dt_boxes = dt_boxes_list[ino] img_name = img_name_list[ino] dt_boxes_json = [] for box in dt_boxes: tmp_json = {"transcription": ""} tmp_json['points'] = box.tolist() dt_boxes_json.append(tmp_json) otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n" fout.write(otstr.encode()) #draw_det_res(dt_boxes, config, img_name, ino) logger.info("success!")
def main(): config = load_config(FLAGS.config) merge_config(FLAGS.opt) print(config) alg = config['Global']['algorithm'] assert alg in ['EAST', 'DB'] # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] check_gpu(use_gpu) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) det_model = create_module( config['Architecture']['function'])(params=config) startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): train_loader, train_outputs = det_model(mode="train") train_fetch_list = [v.name for v in train_outputs] train_loss = train_outputs[0] opt_params = config['Optimizer'] optimizer = create_module(opt_params['function'])(opt_params) optimizer.minimize(train_loss) global_lr = optimizer._global_learning_rate() global_lr.persistable = True train_fetch_list.append(global_lr.name) eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): eval_loader, eval_outputs = det_model(mode="eval") eval_fetch_list = [v.name for v in eval_outputs] eval_prog = eval_prog.clone(for_test=True) train_reader = reader.train_reader(config=config) train_loader.set_sample_list_generator(train_reader, places=place) exe.run(startup_prog) # compile program for multi-devices train_compile_program = create_multi_devices_program( train_prog, train_loss.name) pretrain_weights = config['Global']['pretrain_weights'] if pretrain_weights is not None: load_pretrain(exe, train_prog, pretrain_weights) print("pretrain weights loaded!") train_batch_id = 0 if alg == 'EAST': train_log_keys = ['loss_total', 'loss_cls', 'loss_offset'] elif alg == 'DB': train_log_keys = [ 'loss_total', 'loss_shrink', 'loss_threshold', 'loss_binary' ] log_smooth_window = config['Global']['log_smooth_window'] epoch_num = config['Global']['epoch_num'] print_step = config['Global']['print_step'] eval_step = config['Global']['eval_step'] save_epoch_step = config['Global']['save_epoch_step'] save_dir = config['Global']['save_dir'] train_stats = TrainingStats(log_smooth_window, train_log_keys) best_eval_hmean = -1 best_batch_id = 0 best_epoch = 0 for epoch in range(epoch_num): train_loader.start() try: while True: t1 = time.time() train_outs = exe.run(program=train_compile_program, fetch_list=train_fetch_list, return_numpy=False) loss_total = np.mean(np.array(train_outs[0])) if alg == 'EAST': loss_cls = np.mean(np.array(train_outs[1])) loss_offset = np.mean(np.array(train_outs[2])) stats = {'loss_total':loss_total, 'loss_cls':loss_cls,\ 'loss_offset':loss_offset} elif alg == 'DB': loss_shrink_maps = np.mean(np.array(train_outs[1])) loss_threshold_maps = np.mean(np.array(train_outs[2])) loss_binary_maps = np.mean(np.array(train_outs[3])) stats = {'loss_total':loss_total, 'loss_shrink':loss_shrink_maps, \ 'loss_threshold':loss_threshold_maps, 'loss_binary':loss_binary_maps} lr = np.mean(np.array(train_outs[-1])) t2 = time.time() train_batch_elapse = t2 - t1 # stats = {'loss_total':loss_total, 'loss_cls':loss_cls,\ # 'loss_offset':loss_offset} train_stats.update(stats) if train_batch_id > 0 and train_batch_id % print_step == 0: logs = train_stats.log() strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format( epoch, train_batch_id, lr, logs, train_batch_elapse) logger.info(strs) if train_batch_id > 0 and\ train_batch_id % eval_step == 0: metrics = eval_det_run(exe, eval_prog, eval_fetch_list, config, "eval") hmean = metrics['hmean'] if hmean >= best_eval_hmean: best_eval_hmean = hmean best_batch_id = train_batch_id best_epoch = epoch save_path = save_dir + "/best_accuracy" save_model(train_prog, save_path) strs = 'Test iter: {}, metrics:{}, best_hmean:{:.6f}, best_epoch:{}, best_batch_id:{}'.format( train_batch_id, metrics, best_eval_hmean, best_epoch, best_batch_id) logger.info(strs) train_batch_id += 1 except fluid.core.EOFException: train_loader.reset() if epoch > 0 and epoch % save_epoch_step == 0: save_path = save_dir + "/iter_epoch_%d" % (epoch) save_model(train_prog, save_path)
def main(): config = load_config(FLAGS.config) merge_config(FLAGS.opt) char_ops = CharacterOps(config['Global']) config['Global']['char_num'] = char_ops.get_char_num() print(config) # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] check_gpu(use_gpu) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) rec_model = create_module( config['Architecture']['function'])(params=config) startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): train_loader, train_outputs = rec_model(mode="train") save_var = train_outputs[1] if "gradient_clip" in config['Global']: gradient_clip = config['Global']['gradient_clip'] clip = fluid.clip.GradientClipByGlobalNorm(gradient_clip) fluid.clip.set_gradient_clip(clip, program=train_prog) train_fetch_list = [v.name for v in train_outputs] train_loss = train_outputs[0] opt_params = config['Optimizer'] optimizer = create_module(opt_params['function'])(opt_params) optimizer.minimize(train_loss) global_lr = optimizer._global_learning_rate() global_lr.persistable = True train_fetch_list.append(global_lr.name) train_reader = reader.train_eval_reader(config=config, char_ops=char_ops, mode="train") train_loader.set_sample_list_generator(train_reader, places=place) eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): eval_loader, eval_outputs = rec_model(mode="eval") eval_fetch_list = [v.name for v in eval_outputs] eval_prog = eval_prog.clone(for_test=True) exe.run(startup_prog) eval_reader = reader.train_eval_reader(config=config, char_ops=char_ops, mode="eval") eval_loader.set_sample_list_generator(eval_reader, places=place) # compile program for multi-devices train_compile_program = create_multi_devices_program( train_prog, train_loss.name) pretrain_weights = config['Global']['pretrain_weights'] if pretrain_weights is not None: load_pretrain(exe, train_prog, pretrain_weights) train_batch_id = 0 train_log_keys = ['loss', 'acc'] log_smooth_window = config['Global']['log_smooth_window'] epoch_num = config['Global']['epoch_num'] loss_type = config['Global']['loss_type'] print_step = config['Global']['print_step'] eval_step = config['Global']['eval_step'] save_epoch_step = config['Global']['save_epoch_step'] save_dir = config['Global']['save_dir'] train_stats = TrainingStats(log_smooth_window, train_log_keys) best_eval_acc = -1 best_batch_id = 0 best_epoch = 0 for epoch in range(epoch_num): train_loader.start() try: while True: t1 = time.time() train_outs = exe.run(program=train_compile_program, fetch_list=train_fetch_list, return_numpy=False) loss = np.mean(np.array(train_outs[0])) lr = np.mean(np.array(train_outs[-1])) preds = np.array(train_outs[1]) preds_lod = train_outs[1].lod()[0] labels = np.array(train_outs[2]) labels_lod = train_outs[2].lod()[0] acc, acc_num, img_num = cal_predicts_accuracy( char_ops, preds, preds_lod, labels, labels_lod) t2 = time.time() train_batch_elapse = t2 - t1 stats = {'loss': loss, 'acc': acc} train_stats.update(stats) if train_batch_id > 0 and train_batch_id % print_step == 0: logs = train_stats.log() strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format( epoch, train_batch_id, lr, logs, train_batch_elapse) logger.info(strs) if train_batch_id > 0 and train_batch_id % eval_step == 0: outs = eval_run(exe, eval_prog, eval_loader, eval_fetch_list, char_ops, train_batch_id, "eval") eval_acc, acc_num, sample_num = outs if eval_acc > best_eval_acc: best_eval_acc = eval_acc best_batch_id = train_batch_id best_epoch = epoch save_path = save_dir + "/best_accuracy" save_model(train_prog, save_path) strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, sample_num:{}'.format( train_batch_id, eval_acc, best_eval_acc, best_epoch, best_batch_id, sample_num) logger.info(strs) train_batch_id += 1 except fluid.core.EOFException: train_loader.reset() if epoch > 0 and epoch % save_epoch_step == 0: save_path = save_dir + "/iter_epoch_%d" % (epoch) save_model(train_prog, save_path)