Exemple #1
0
def import_howto(args):
    try:
        howto_steps, verbose, save = args
        prac = PRAC()
        prac.verbose = verbose
        for howto, steps in list(howto_steps.items()):
            prac.tell(howto=howto, steps=steps, save=save)
    except KeyboardInterrupt:
        return
def extract_actionroles(adt_instance, queryHelper,actioncore):
    prac = PRAC()
    #PRAC uses snake case to represent the actionroles
    #However the episodic memory log file uses camel case
    actionroles = list(map(snake_case_to_camel_case, prac.actioncores[actioncore].roles))
    extraction_result = {}
    
    for actionrole in actionroles:
        actionrole_uri = PRAC_ADT_PROPERTY_URI+actionrole 
        query_result = perform_triplet_query(queryHelper, adt_instance, actionrole_uri)
        if query_result:
            #It will be assumed that one role is only represented once in the adt
            role_owl_individual_uri = query_result[0][2]
            query_result = perform_triplet_query(queryHelper,role_owl_individual_uri,RDF_TYPE)
            #At the moment the actionrole is represented with the URI 'http://knowrob.org/kb/actionrole'
            #TODO Update this procedure if the connection to WordNet is added to the OWL files
            for e in query_result:
                temp = e[2].split("/")[-1]
                if not temp.startswith("owl#"): 
                    extraction_result[actionrole] = str(temp)
    
    return extraction_result
Exemple #3
0
def main():
    headline("Running main...")

    usage = 'PRAC Object Recognition tool'
    parser = argparse.ArgumentParser(description=usage)
    parser.add_argument(
        "-i",
        "--interactive",
        dest="interactive",
        default=False,
        action='store_true',
        help="Starts PRAC object recognition with an interactive "
        "GUI tool.")
    parser.add_argument(
        "-t",
        "--train",
        dest="trainMLN",
        nargs=1,
        default=None,
        help=
        "Train given MLN with inference results from argument. Example: pracobjrec -t orange.n.01 'It is a yellow "
        "or orange fruit.'")
    parser.add_argument(
        "-r",
        "--regular",
        dest="regular",
        default=False,
        action='store_true',
        help="Runs regular inference pipeline. Arguments: mlnName")
    parser.add_argument("-f",
                        "--onthefly",
                        dest="onthefly",
                        default=False,
                        action='store_true',
                        help="Generate MLN on the fly")
    parser.add_argument(
        "-m",
        "--mln",
        nargs=2,
        dest='mln',
        default=None,
        help="Runs regular inference pipeline. Arguments: mlnName")

    args = parser.parse_args()
    opts_ = vars(args)

    interactive = args.interactive
    regular = args.regular
    sentences = args

    prac = PRAC()
    prac.wordnet = WordNet(concepts=None)
    infer = PRACInference(prac, sentences)

    # in case we have natural-language parameters, parse them
    if len(infer.instructions) > 0:
        parser = prac.module('nl_parsing')
        prac.run(infer, parser)

    if interactive:  # use the GUI
        logger.info('Entering interactive mode')
        gui = PRACQueryGUI(infer)
        gui.open()
    elif args.trainMLN:  # training with property inference output
        logger.info(
            'Training MLN {} with result from property inference'.format(
                args.trainMLN))

        # property inference from parsed input
        propExtract = prac.module('prop_extraction')
        prac.run(infer, propExtract)

        objRecog = prac.module('obj_recognition')

        praclearn = PRACLearning(prac)
        praclearn.otherParams['mln'] = args.mln[0]
        praclearn.otherParams['logic'] = args.mln[1]
        praclearn.otherParams['concept'] = args.trainMLN
        praclearn.otherParams['onthefly'] = args.onthefly
        praclearn.training_dbs = infer.inference_steps[-1].output_dbs

        objRecog.train(praclearn)
        sys.exit(0)

    else:  # regular PRAC pipeline
        logger.info('Entering regular inference pipeline')

        # property inference from parsed input
        propExtract = prac.module('prop_extraction')
        prac.run(infer, propExtract)

        objRecog = prac.module('obj_recognition')

        # object inference based on inferred properties
        prac.run(infer, objRecog)

    step = infer.inference_steps[-1]
    print()
    print(prac_heading('PRAC INFERENCE RESULTS'))
    print()
    print('Object description: {}'.format(
        colorize(''.join(sentences), (None, 'white', True), True)))
    print()
    for db in step.output_dbs:
        print('Inferred properties:')
        for ek in sorted(db.evidence):
            e = db.evidence[ek]
            if e == 1.0 and any(
                    ek.startswith(p) for p in [
                        'color', 'size', 'shape', 'hypernym', 'hasa',
                        'dimension', 'consistency', 'material'
                    ]):
                print('{}({}, {}'.format(
                    colorize(ek.split('(')[0], (None, 'white', True), True),
                    colorize(
                        ek.split('(')[1].split(',')[0],
                        (None, 'magenta', True), True),
                    colorize(
                        ek.split('(')[1].split(',')[1], (None, 'green', True),
                        True)))

    for db in step.output_dbs:
        print()
        print('Inferred possible concepts:')
        for ek in sorted(db.evidence, key=db.evidence.get, reverse=True):
            e = db.evidence[ek]
            if e > 0.001 and ek.startswith('object'):
                print('{} {}({}, {})'.format(
                    colorize('{:.4f}'.format(e), (None, 'cyan', True), True),
                    colorize('object', (None, 'white', True), True),
                    colorize(
                        ek.split(',')[0].split('(')[1],
                        (None, 'magenta', True), True),
                    colorize(
                        ek.split(',')[1].split(')')[0], (None, 'yellow', True),
                        True)))
Exemple #4
0
            constants.JSON_SENSE_WORD: self.word,
            constants.JSON_SENSE_LEMMA: self.lemma,
            constants.JSON_SENSE_POS: self.pos,
            constants.JSON_SENSE_WORD_IDX: self.widx,
            constants.JSON_SENSE_SENSE: self.sense,
            constants.JSON_SENSE_MISC: self.misc
        })

    @staticmethod
    def fromjson(prac, data):
        return Word(prac, data.get(constants.JSON_SENSE_WORD),
                    data.get(constants.JSON_SENSE_LEMMA),
                    data.get(constants.JSON_SENSE_POS),
                    data.get(constants.JSON_SENSE_SENSE),
                    data.get(constants.JSON_SENSE_WORD_IDX),
                    data.get(constants.JSON_SENSE_WORD))


if __name__ == '__main__':
    from prac.core.base import PRAC
    prac = PRAC()
    o1 = Object(prac,
                'w1',
                'cup.n.01',
                syntax=Word(prac, 'water-1', 'water', 1, 'water.n.06', 'NN',
                            'water'),
                props={'color': 'green.n.01'})
    print(o1)
    print(repr(o1))
    pprint(o1.tojson())
Exemple #5
0
def main():
    logger.level = logs.DEBUG

    usage = 'PRAC Query Tool'

    parser = argparse.ArgumentParser(description=usage)
    parser.add_argument("instruction", help="The instruction.")
    parser.add_argument(
        "-i",
        "--interactive",
        dest="interactive",
        default=False,
        action='store_true',
        help="Starts PRAC inference with an interactive GUI tool.")
    parser.add_argument("-v",
                        "--verbose",
                        dest="verbose",
                        default=1,
                        type=int,
                        action="store",
                        help="Set verbosity level {0..3}. Default is 1.")

    args = parser.parse_args()
    opts_ = vars(args)

    sentences = args.instruction
    prac = PRAC()
    prac.verbose = args.verbose

    conf = PRACMLNConfig(DEFAULT_CONFIG)

    if args.interactive:  # use the GUI
        from tkinter import Tk
        root = Tk()
        # in case we have natural-language parameters, parse them
        infer = PRACInference(prac, sentences)
        if len(sentences) > 0:
            # module = prac.module('nl_parsing')
            # prac.run(infer, module)
            n = infer.runstep()

            # print parsing result
            for odb in n.outdbs:
                odb.write()

            # print input sentence
            print(n.nlinstr())

            #Started control structure handling
            '''
            cs_recognition = prac.module('cs_recognition')
            prac.run(inference, cs_recognition)
            
            
            dbs = inference.inference_steps[-1].output_dbs
            dbs_ = []
            
            for db in dbs:
                dbs_.extend(parser.extract_multiple_action_cores(db)) 
            inference.inference_steps[-1].output_dbs = dbs_
            '''
            app = PRACQueryGUI(root,
                               infer.prac,
                               n,
                               conf,
                               directory=args[0] if args else None)
            root.mainloop()
        exit(0)

    # regular PRAC pipeline
    infer = PRACInference(prac, sentences)
    infer.run()

    print(headline('inference results'))
    print('instructions:')
    for i in infer.root:
        print(i)
    frames = []
    for step in infer.steps():
        print(step.frame)
    print(prac_heading('cram plans', color='blue'))
    for step in infer.steps():
        if hasattr(step, 'plan'):
            print(step.plan)


#     infer.write()
    exit(0)