def set_outputfilename(self): if not hasattr(self, "output_filename") or not hasattr( self, "db_filename") or not hasattr(self, "mln_filename"): return mln = self.mln_container.selected_file.get() db = self.db_container.selected_file.get() if "" in (mln, db): return if self.selected_method.get(): method = InferenceMethods.clazz(self.selected_method.get()) methodid = InferenceMethods.id(method) filename = config.query_output_filename(mln, methodid, db) self.output_filename.set(filename)
def update_config(self): self.config = PRACMLNConfig() self.config["use_emln"] = self.use_emln.get() self.config['mln'] = self.mln_container.selected_file.get().strip( ).lstrip('*') self.config['emln'] = self.emln_container.selected_file.get().strip( ).lstrip('*') self.config["db"] = self.db_container.selected_file.get().strip( ).lstrip('*') self.config["method"] = InferenceMethods.id( self.selected_method.get().strip()) self.config["params"] = self.params.get().strip() self.config["queries"] = self.query.get() self.config["output_filename"] = self.output_filename.get().strip() self.config["cw"] = self.closed_world.get() self.config["cw_preds"] = self.cwPreds.get() self.config['profile'] = self.profile.get() self.config['logic'] = self.selected_logic.get() self.config['grammar'] = self.selected_grammar.get() self.config['multicore'] = self.multicore.get() self.config['save'] = self.save.get() self.config['ignore_unknown_preds'] = self.ignore_unknown_preds.get() self.config['verbose'] = self.verbose.get() self.config['window_loc'] = self.master.winfo_geometry() self.config['dir'] = self.dir self.project.queryconf = PRACMLNConfig() self.project.queryconf.update(self.config.config.copy())
def set_config(self, newconf): self.config = newconf self.selected_grammar.set(ifnone(newconf.get('grammar'), 'PRACGrammar')) self.selected_logic.set(ifnone(newconf.get('logic'), 'FirstOrderLogic')) self.mln_container.selected_file.set(ifnone(newconf.get('mln'), '')) if self.use_emln.get(): self.emln_container.selected_file.set( ifnone(newconf.get('mln'), '')) self.db_container.selected_file.set(ifnone(newconf.get('db'), "")) self.selected_method.set( ifnone(newconf.get("method"), InferenceMethods.name('MCSAT'), transform=InferenceMethods.name)) self.multicore.set(ifnone(newconf.get('multicore'), 0)) self.profile.set(ifnone(newconf.get('profile'), 0)) self.params.set(ifnone(newconf.get('params'), '')) self.use_emln.set(ifnone(newconf.get('use_emln'), 0)) self.verbose.set(ifnone(newconf.get('verbose'), 1)) self.ignore_unknown_preds.set( ifnone(newconf.get('ignore_unknown_preds'), 0)) self.output_filename.set(ifnone(newconf.get('output_filename'), '')) self.cwPreds.set(ifnone(newconf.get('cw_preds'), '')) self.closed_world.set(ifnone(newconf.get('cw'), 0)) self.save.set(ifnone(newconf.get('save'), 0)) self.query.set(ifnone(newconf.get('queries'), '')) self.onchange_cw()
def __handle_mln_query(self, request): try: rospy.loginfo("Processing request...") config = self.__get_config(request) if self.__config_changed(config): rospy.loginfo("Configuration changed") self.__mln = MLN(config.logic, config.grammar, config.mlnFiles) self.__mln_date = os.path.getmtime(config.mlnFiles) self.__config = config db = self.__get_db(request, config, self.__mln) materialized_mln = self.__mln.materialize(db) mrf = materialized_mln.ground(db) if not request.query: raise Exception("No query provided!") inference = InferenceMethods.clazz(config.method)( mrf, request.query.queries) result = inference.run() self.__save_results(config, result) tuple_list = [] for atom, probability in inference.results.items(): tuple_list.append(AtomProbPair(str(atom), float(probability))) tuple_list.sort(key=lambda item: item.prob, reverse=True) to_return = MLNInterfaceResponse(MLNDatabase(tuple_list)) rospy.loginfo("Done!") return to_return except Exception: rospy.logfatal(traceback.format_exc()) return MLNDatabase([])
def set_config(self, conf): self.config = conf self.selected_logic.set(ifnone(conf.get('logic'), 'FirstOrderLogic')) self.mln_container.selected_file.set(ifnone(conf.get('mln'), '')) if not self.keep_evidence: self.db_container.selected_file.set(ifnone(conf.get('db'), '')) self.selected_method.set( ifnone(self.config.get("method"), InferenceMethods.name('MCSAT'), transform=InferenceMethods.name)) self.use_emln.set(ifnone(conf.get('use_emln'), False)) if self.use_emln.get(): self.emln_container.selected_file.set(ifnone(conf.get('emln'), "")) self.multicore.set(ifnone(conf.get('multicore'), False)) self.verbose.set(ifnone(conf.get('verbose'), False)) self.params.set(ifnone(conf.get('params'), '')) self.cwpreds.set(ifnone(conf.get('cw_preds'), '')) self.closed_world.set(ifnone(conf.get('cw'), False)) self.query.set(ifnone(conf.get('queries'), 'foo, bar'))
def __init__(self, master, gconf, directory=None): self.master = master self.initialized = False self.master.bind('<Return>', self.infer) self.master.bind('<Escape>', lambda a: self.master.quit()) self.master.protocol('WM_DELETE_WINDOW', self.quit) self.dir = os.path.abspath( ifnone(directory, ifnone(gconf['prev_query_path'], os.getcwd()))) self.frame = Frame(master) self.frame.pack(fill=BOTH, expand=1) self.frame.columnconfigure(1, weight=1) row = 0 # pracmln project options Label(self.frame, text='PRACMLN Project: ').grid(row=row, column=0, sticky='ES') project_container = Frame(self.frame) project_container.grid(row=row, column=1, sticky="NEWS") # new proj file self.btn_newproj = Button(project_container, text='New Project...', command=self.new_project) self.btn_newproj.grid(row=0, column=1, sticky="WS") # open proj file self.btn_openproj = Button(project_container, text='Open Project...', command=self.ask_load_project) self.btn_openproj.grid(row=0, column=2, sticky="WS") # save proj file self.btn_updateproj = Button(project_container, text='Save Project...', command=self.noask_save_project) self.btn_updateproj.grid(row=0, column=3, sticky="WS") # save proj file as... self.btn_saveproj = Button(project_container, text='Save Project as...', command=self.ask_save_project) self.btn_saveproj.grid(row=0, column=4, sticky="WS") # grammar selection row += 1 Label(self.frame, text='Grammar: ').grid(row=row, column=0, sticky='E') grammars = ['StandardGrammar', 'PRACGrammar'] self.selected_grammar = StringVar() self.selected_grammar.trace('w', self.settings_setdirty) l = OptionMenu(*(self.frame, self.selected_grammar) + tuple(grammars)) l.grid(row=row, column=1, sticky='NWE') # logic selection row += 1 Label(self.frame, text='Logic: ').grid(row=row, column=0, sticky='E') logics = ['FirstOrderLogic', 'FuzzyLogic'] self.selected_logic = StringVar() self.selected_logic.trace('w', self.settings_setdirty) l = OptionMenu(*(self.frame, self.selected_logic) + tuple(logics)) l.grid(row=row, column=1, sticky='NWE') # mln section row += 1 Label(self.frame, text="MLN: ").grid(row=row, column=0, sticky='NE') self.mln_container = FileEditBar(self.frame, directory=self.dir, filesettings={ 'extension': '.mln', 'ftypes': [('MLN files', '.mln')] }, defaultname='*unknown{}', importhook=self.import_mln, deletehook=self.delete_mln, projecthook=self.save_proj, filecontenthook=self.mlnfilecontent, fileslisthook=self.mlnfiles, updatehook=self.update_mln, onchangehook=self.project_setdirty) self.mln_container.editor.bind("<FocusIn>", self._got_focus) self.mln_container.grid(row=row, column=1, sticky="NEWS") self.mln_container.columnconfigure(1, weight=2) self.frame.rowconfigure(row, weight=1) row += 1 self.use_emln = IntVar() self.use_emln.set(0) self.cb_use_emln = Checkbutton(self.frame, text="use model extension", variable=self.use_emln, command=self.onchange_use_emln) self.cb_use_emln.grid(row=row, column=1, sticky="W") # mln extension section row += 1 self.emlncontainerrow = row self.emln_label = Label(self.frame, text="EMLN: ") self.emln_label.grid(row=self.emlncontainerrow, column=0, sticky='NE') self.emln_container = FileEditBar(self.frame, directory=self.dir, filesettings={ 'extension': '.emln', 'ftypes': [('MLN extension files', '.emln') ] }, defaultname='*unknown{}', importhook=self.import_emln, deletehook=self.delete_emln, projecthook=self.save_proj, filecontenthook=self.emlnfilecontent, fileslisthook=self.emlnfiles, updatehook=self.update_emln, onchangehook=self.project_setdirty) self.emln_container.grid(row=self.emlncontainerrow, column=1, sticky="NEWS") self.emln_container.editor.bind("<FocusIn>", self._got_focus) self.emln_container.columnconfigure(1, weight=2) self.onchange_use_emln(dirty=False) self.frame.rowconfigure(row, weight=1) # db section row += 1 Label(self.frame, text="Evidence: ").grid(row=row, column=0, sticky='NE') self.db_container = FileEditBar(self.frame, directory=self.dir, filesettings={ 'extension': '.db', 'ftypes': [('Database files', '.db')] }, defaultname='*unknown{}', importhook=self.import_db, deletehook=self.delete_db, projecthook=self.save_proj, filecontenthook=self.dbfilecontent, fileslisthook=self.dbfiles, updatehook=self.update_db, onchangehook=self.project_setdirty) self.db_container.grid(row=row, column=1, sticky="NEWS") self.db_container.editor.bind("<FocusIn>", self._got_focus) self.db_container.columnconfigure(1, weight=2) self.frame.rowconfigure(row, weight=1) # inference method selection row += 1 self.list_methods_row = row Label(self.frame, text="Method: ").grid(row=row, column=0, sticky=E) self.selected_method = StringVar() self.selected_method.trace('w', self.select_method) methodnames = sorted(InferenceMethods.names()) self.list_methods = OptionMenu(*(self.frame, self.selected_method) + tuple(methodnames)) self.list_methods.grid(row=self.list_methods_row, column=1, sticky="NWE") # options row += 1 option_container = Frame(self.frame) option_container.grid(row=row, column=1, sticky="NEWS") # Multiprocessing self.multicore = IntVar() self.cb_multicore = Checkbutton(option_container, text="Use all CPUs", variable=self.multicore, command=self.settings_setdirty) self.cb_multicore.grid(row=0, column=2, sticky=W) # profiling self.profile = IntVar() self.cb_profile = Checkbutton(option_container, text='Use Profiler', variable=self.profile, command=self.settings_setdirty) self.cb_profile.grid(row=0, column=3, sticky=W) # verbose self.verbose = IntVar() self.cb_verbose = Checkbutton(option_container, text='verbose', variable=self.verbose, command=self.settings_setdirty) self.cb_verbose.grid(row=0, column=4, sticky=W) # options self.ignore_unknown_preds = IntVar() self.cb_ignore_unknown_preds = Checkbutton( option_container, text='ignore unkown predicates', variable=self.ignore_unknown_preds, command=self.settings_setdirty) self.cb_ignore_unknown_preds.grid(row=0, column=5, sticky="W") # queries row += 1 Label(self.frame, text="Queries: ").grid(row=row, column=0, sticky=E) self.query = StringVar() self.query.trace('w', self.settings_setdirty) Entry(self.frame, textvariable=self.query).grid(row=row, column=1, sticky="NEW") # additional parameters row += 1 Label(self.frame, text="Add. params: ").grid(row=row, column=0, sticky="NE") self.params = StringVar() self.params.trace('w', self.settings_setdirty) self.entry_params = Entry(self.frame, textvariable=self.params) self.entry_params.grid(row=row, column=1, sticky="NEW") # closed-world predicates row += 1 Label(self.frame, text="CW preds: ").grid(row=row, column=0, sticky="E") cw_container = Frame(self.frame) cw_container.grid(row=row, column=1, sticky='NEWS') cw_container.columnconfigure(0, weight=1) self.cwPreds = StringVar() self.cwPreds.trace('w', self.settings_setdirty) self.entry_cw = Entry(cw_container, textvariable=self.cwPreds) self.entry_cw.grid(row=0, column=0, sticky="NEWS") self.closed_world = IntVar() self.cb_closed_world = Checkbutton(cw_container, text="CW Assumption", variable=self.closed_world, command=self.onchange_cw) self.cb_closed_world.grid(row=0, column=1, sticky='W') # output filename row += 1 output_cont = Frame(self.frame) output_cont.grid(row=row, column=1, sticky='NEWS') output_cont.columnconfigure(0, weight=1) # - filename Label(self.frame, text="Output: ").grid(row=row, column=0, sticky="NE") self.output_filename = StringVar() self.entry_output_filename = Entry(output_cont, textvariable=self.output_filename) self.entry_output_filename.grid(row=0, column=0, sticky="NEW") # - save option self.save = IntVar() self.cb_save = Checkbutton(output_cont, text="save", variable=self.save) self.cb_save.grid(row=0, column=1, sticky=W) # start button row += 1 start_button = Button(self.frame, text=">> Start Inference <<", command=self.infer) start_button.grid(row=row, column=1, sticky="NEW") self.settings_dirty = IntVar() self.project_dirty = IntVar() self.gconf = gconf self.project = None self.project_dir = os.path.abspath( ifnone(directory, ifnone(gconf['prev_query_path'], os.getcwd()))) if gconf['prev_query_project':self.project_dir] is not None: self.load_project( os.path.join(self.project_dir, gconf['prev_query_project':self.project_dir])) else: self.new_project() self.config = self.project.queryconf self.project.addlistener(self.project_setdirty) self.mln_container.dirty = False self.emln_container.dirty = False self.db_container.dirty = False self.project_setdirty(dirty=False) self.master.geometry(gconf['window_loc_query']) self.initialized = True
def method(self): return InferenceMethods.clazz(self._config.get('method', 'MC-SAT'))
def apply_prob_constraints(self, constraints, method=InferenceMethods.EnumerationAsk, thr=1.0e-3, steps=20, fittingMCSATSteps=5000, fittingParams=None, given=None, queries=None, maxThreshold=None, greedy=False, probabilityFittingResultFileName=None, **args): ''' Applies the given probability constraints (if any), dynamically modifying weights of the underlying MLN by applying iterative proportional fitting :param constraints: list of constraints :param method: one of the inference methods defined in InferenceMethods inferenceParams: parameters to pass on to the inference method :param given: if not None, fit parameters of posterior (given the evidence) rather than prior :param querie queries to compute along the way, results for which will be returned :param thr: when maximum absolute difference between desired and actual probability drops below this value, then stop (convergence) maxThreshold: if not None, then convergence is relaxed, and we stop when the *mean* absolute difference between desired and actual probability drops below "threshold" *and* the maximum is below "maxThreshold" ''' if fittingParams is None: fittingParams = {} inferenceParams = fittingParams inferenceParams["doProbabilityFitting"] = False # avoid recursive fitting calls when calling embedded inference method if given == None: given = "" if queries is None: queries = [] if inferenceParams is None: inferenceParams = {} if not constraints: if queries: pass # TODO !!!! because this is called from inferIPFPM, should perform inference anyhow return t_start = time.time() # determine relevant formulas for req in constraints: # if we don't yet have a ground formula to fit, create one if not "gndFormula" in req: # if we don't yet have a formula to use, search for one that matches the expression to fit if not "idxFormula" in req: idxFormula = None for idxF, formula in enumerate(self.formulas): #print strFormula(formula), req["expr"] if fstr(formula).replace(" ", "") == req["expr"]: idxFormula = idxF break if idxFormula is None: raise Exception("Probability constraint on '%s' cannot be applied because the formula is not part of the MLN!" % req["expr"]) req["idxFormula"] = idxFormula # instantiate a ground formula formula = self.formulas[req["idxFormula"]] variables = formula.getVariables(self) groundVars = {} for varName, domName in variables.iteritems(): # instantiate vars arbitrarily (just use first element of domain) groundVars[varName] = self.domains[domName][0] gndFormula = formula.ground(self, groundVars) req["gndExpr"] = str(gndFormula) req["gndFormula"] = gndFormula # iterative fitting algorithm step = 1 # fitting round fittingStep = 1 # actual IPFP iteration #print "probConstraints", probConstraints, "queries", queries what = [r["gndFormula"] for r in constraints] + queries done = False while step <= steps and not done: # calculate probabilities of the constrained formulas (ground formula) if method is InferenceMethods.Exact: if not hasattr(self, "worlds"): self._getWorlds() else: self._calculateWorldValues() results = self.inferExact(what, given=given, verbose=False, **inferenceParams) elif method == InferenceMethods.EnumerationAsk: results = self.inferEnumerationAsk(what, given=given, verbose=False, **inferenceParams) #elif inferenceMethod == InferenceMethods.ExactLazy: # results = self.inferExactLazy(what, given=given, verbose=False, **inferenceParams) elif method == InferenceMethods.MCSAT: results = self.inferMCSAT(what, given=given, verbose=False, maxSteps = fittingMCSATSteps, **inferenceParams) else: raise Exception("Requested inference method (%s) not supported by probability constraint fitting" % InferenceMethods.getName(method)) if type(results) != list: results = [results] # compute deviations diffs = [abs(r["p"] - results[i]) for (i, r) in enumerate(constraints)] maxdiff = max(diffs) meandiff = sum(diffs) / len(diffs) # are we done? done = maxdiff <= thr if not done and maxThreshold is not None: # relaxed convergence criterion done = (meandiff <= thr) and (maxdiff <= maxThreshold) if done: break # select constraint to fit if greedy: idxConstraint = diffs.index(maxdiff) strStep = "%d;%d" % (step, fittingStep) else: idxConstraint = (fittingStep - 1) % len(constraints) strStep = "%d;%d/%d" % (step, idxConstraint + 1, len(constraints)) req = constraints[idxConstraint] # get the scaling factor and apply it formula = self.formulas[req["idxFormula"]] p = results[idxConstraint] #print "p", p, "results", results, "idxConstraint", idxConstraint pnew = req["p"] precision = 1e-3 if p == 0.0: p = precision if p == 1.0: p = 1 - precision f = pnew * (1 - p) / p / (1 - pnew) old_weight = formula.weight formula.weight += float(logx(f)) #make sure to set the weight to a native float and not an mpmath value diff = diffs[idxConstraint] # print status logger.debug(" [%s] p=%f vs. %f (diff = %f), weight %s: %f -> %f, dev max %f mean %f, elapsed: %.3fs" % (strStep, p, pnew, diff, str(formula), old_weight, formula.weight, maxdiff, meandiff, time.time() - t_start)) if fittingStep % len(constraints) == 0: step += 1 fittingStep += 1 #write resulting mln: if probabilityFittingResultFileName != None: mlnFile = file(probabilityFittingResultFileName, "w") self.mln.write(mlnFile) mlnFile.close() print "written MLN with probability constraints to:", probabilityFittingResultFileName return (results[len(constraints):], {"steps": min(step, steps), "fittingSteps": fittingStep, "maxdiff": maxdiff, "meandiff": meandiff, "time": time.time() - t_start})
def __init__(self, master, prac, node, gconf, directory='.'): self.logger = logs.getlogger(self.__class__.__name__, level=logs.DEBUG) self.master = master self.initialized = False self.master.bind('<Return>', self.start) self.master.bind('<Escape>', lambda a: self.master.quit()) self.master.protocol('WM_DELETE_WINDOW', self.quit) self.prac = prac self.prac_inference = node.pracinfer self.infStep = None self.module_dir = os.path.join(locations.pracmodules, 'wnsenses') self.frame = Frame(master) self.frame.pack(fill=BOTH, expand=1) self.frame.columnconfigure(1, weight=1) # module selection row = 0 Label(self.frame, text="Module: ").grid(row=row, column=0, sticky="E") modules = sorted([module for module in self.prac._manifests_by_name]) self.selected_module = StringVar(master) self.selected_module.trace("w", self.select_module) self.list_modules = OptionMenu(*(self.frame, self.selected_module) + tuple(modules)) self.list_modules.grid(row=row, column=1, sticky="NWE") # Project selection row += 1 Label(self.frame, text="Project: ").grid(row=row, column=0, sticky="E") saveprojectcontainer = Frame(self.frame) saveprojectcontainer.grid(row=row, column=1, sticky="NEWS") saveprojectcontainer.columnconfigure(0, weight=1) self.selected_project = StringVar(master) projectfiles = [''] self.list_projects = OptionMenu( *(saveprojectcontainer, self.selected_project) + tuple(projectfiles)) self.list_projects.grid(row=0, column=0, sticky="NWES") self.selected_project.trace("w", self.select_project) # save proj file self.btn_saveproj = Button(saveprojectcontainer, text='Save Project...', command=self.noask_save_project) self.btn_saveproj.grid(row=0, column=1, sticky="E") # save proj file as... self.btn_saveproj = Button(saveprojectcontainer, text='Save Project as...', command=self.ask_save_project) self.btn_saveproj.grid(row=0, column=2, sticky="E") # logic selection row += 1 Label(self.frame, text='Logic: ').grid(row=row, column=0, sticky='E') logics = ['FirstOrderLogic', 'FuzzyLogic'] self.selected_logic = StringVar(master) self.selected_logic.trace('w', self.settings_setdirty) l = OptionMenu(*(self.frame, self.selected_logic) + tuple(logics)) l.grid(row=row, column=1, sticky='NWE') # mln section row += 1 Label(self.frame, text="MLN: ").grid(row=row, column=0, sticky='NE') self.mln_container = FileEditBar(self.frame, dir=self.module_dir, filesettings={ 'extension': '.mln', 'ftypes': [('MLN files', '.mln')] }, defaultname='*unknown{}', importhook=self.import_mln, deletehook=self.delete_mln, projecthook=self.save_proj, filecontenthook=self.mlnfilecontent, fileslisthook=self.mlnfiles, updatehook=self.update_mln, onchangehook=self.project_setdirty) self.mln_container.grid(row=row, column=1, sticky="NEWS") self.mln_container.columnconfigure(1, weight=2) self.frame.rowconfigure(row, weight=1) row += 1 self.use_emln = IntVar() self.use_emln.set(0) self.cb_use_emln = Checkbutton(self.frame, text="use model extension", variable=self.use_emln, command=self.onchange_use_emln) self.cb_use_emln.grid(row=row, column=1, sticky="W") # mln extension section row += 1 self.emlncontainerrow = row self.emln_label = Label(self.frame, text="EMLN: ") self.emln_label.grid(row=self.emlncontainerrow, column=0, sticky='NE') self.emln_container = FileEditBar(self.frame, dir=self.module_dir, filesettings={ 'extension': '.emln', 'ftypes': [('MLN extension files', '.emln') ] }, defaultname='*unknown{}', importhook=self.import_emln, deletehook=self.delete_emln, projecthook=self.save_proj, filecontenthook=self.emlnfilecontent, fileslisthook=self.emlnfiles, updatehook=self.update_emln, onchangehook=self.project_setdirty) self.emln_container.grid(row=self.emlncontainerrow, column=1, sticky="NEWS") self.emln_container.columnconfigure(1, weight=2) self.onchange_use_emln(dirty=False) self.frame.rowconfigure(row, weight=1) # db section row += 1 Label(self.frame, text="Evidence: ").grid(row=row, column=0, sticky='NE') self.db_container = FileEditBar(self.frame, dir=self.module_dir, filesettings={ 'extension': '.db', 'ftypes': [('Database files', '.db')] }, defaultname='*unknown{}', importhook=self.import_db, deletehook=self.delete_db, projecthook=self.save_proj, filecontenthook=self.dbfilecontent, fileslisthook=self.dbfiles, updatehook=self.update_db, onchangehook=self.project_setdirty) self.db_container.grid(row=row, column=1, sticky="NEWS") self.db_container.columnconfigure(1, weight=2) self.frame.rowconfigure(row, weight=1) # inference method selection row += 1 self.list_methods_row = row Label(self.frame, text="Method: ").grid(row=row, column=0, sticky=E) self.selected_method = StringVar(master) self.selected_method.trace('w', self.settings_setdirty) self.list_methods = OptionMenu(self.frame, self.selected_method, *InferenceMethods.names()) self.list_methods.grid(row=self.list_methods_row, column=1, sticky="NWE") # queries row += 1 Label(self.frame, text="Queries: ").grid(row=row, column=0, sticky=E) self.query = StringVar(master) Entry(self.frame, textvariable=self.query).grid(row=row, column=1, sticky="NEW") # parameters row += 1 Label(self.frame, text="Parameters: ").grid(row=row, column=0, sticky="NE") self.params = StringVar(master) self.entry_params = Entry(self.frame, textvariable=self.params) self.entry_params.grid(row=row, column=1, sticky="NEW") # closed-world predicates row += 1 Label(self.frame, text="CW preds: ").grid(row=row, column=0, sticky="NE") self.cwpreds = StringVar(master) self.entry_cw = Entry(self.frame, textvariable=self.cwpreds) self.entry_cw.grid(row=row, column=1, sticky="NEW") # all preds open-world cw_container = Frame(self.frame) cw_container.grid(row=row, column=1, sticky="NES") self.closed_world = IntVar() self.cb_closed_world = Checkbutton( cw_container, text="Apply CW assumption to all except queries", variable=self.closed_world) self.cb_closed_world.grid(row=row, column=2, sticky='E') # Multiprocessing and verbose row += 1 options_container = Frame(self.frame) options_container.grid(row=row, column=1, sticky='NEWS') self.multicore = IntVar() self.cb_multicore = Checkbutton(options_container, text="Use all CPUs", variable=self.multicore) self.cb_multicore.grid(row=0, column=0, sticky=W) self.verbose = IntVar() self.cb_verbose = Checkbutton(options_container, text="verbose", variable=self.verbose) self.cb_verbose.grid(row=0, column=1, sticky=W) self.keep_evidence = IntVar() self.cb_keep_evidence = Checkbutton(options_container, text="keep result", variable=self.keep_evidence) self.cb_keep_evidence.grid(row=0, column=2, sticky=W) self.keep_evidence.set(True) # start and continue buttons row += 1 self.btn_container = Frame(self.frame) self.btn_container.grid(row=row, column=1, sticky='EW') start_button = Button(self.btn_container, text="Start Inference", command=self.start) start_button.grid(row=0, column=1, sticky='E') continue_button = Button(self.btn_container, text="Continue >", command=self.oncontinue) continue_button.grid(row=0, column=2, sticky='W') self.settings_dirty = IntVar() self.project_dirty = IntVar() self.gconf = gconf self.project = None self.dir = os.path.abspath( ifnone(gconf['prev_query_path'], DEFAULT_CONFIG)) if gconf['prev_query_project':self.dir] is not None: self.load_project( os.path.join(self.dir, gconf['prev_query_project':self.dir])) else: self.new_project() self.config = self.project.queryconf self.project.addlistener(self.project_setdirty) self.selected_module.set(self.gconf.get("module", modules[0])) self.update_dbeditor_from_result(node.outdbs) self.mln_container.dirty = False self.emln_container.dirty = False self.db_container.dirty = False self.project_setdirty(dirty=False) self.master.geometry(gconf['window_loc_query']) self.initialized = True