Exemple #1
0
    def simple(self):
        progress_flu_rule = DiscreteInvMarkovChain('flu-status', { 's': [0.95, 0.05, 0.00], 'i': [0.00, 0.50, 0.50], 'r': [0.10, 0.00, 0.90] })
        # s - susceptible
        # i - infectious
        # r - recovered

        sites = { 'home': Site('h'), 'work': Site('w') }

        probe_grp_size_flu = GroupSizeProbe.by_attr('flu', 'flu-status', progress_flu_rule.get_states(), msg_mode=ProbeMsgMode.DISP, memo='Mass distribution across flu status')
        probe_grp_size_site = GroupSizeProbe.by_rel('site', Site.AT, sites.values(), msg_mode=ProbeMsgMode.DISP, memo='Mass distribution across sites')


    # ----------------------------------------------------------------------------------------------------------------------
    # (1) Simulations testing the basic operations on groups and rules:

        # (1.1) A single-group, single-rule (1g.1r) simulation:
        s = Simulation()
        s.add_rule(progress_flu_rule)
        s.add_probe(probe_grp_size_flu)
        s.add_group(Group('g0', 1000, { 'flu-status': 's' }))
        sys.stdout = open('out.dat', 'w')
        s.run(24)
        sys.stdout.close()
        
        with open('out.dat') as file:
            self.data = file.readlines()
            self.data = str(self.data)
        apple  = self.data.replace('\\n', '<br>')
       # print(apple)
        return apple
Exemple #2
0
def run_the_app():

    # Draw the UI elements to search for objects (pedestrians, cars, etc.)
    gsize, s1, s2, s3, i1, i2, i3, r1, r2, r3, run = frame_selector_ui()

    progress_flu_rule = DiscreteInvMarkovChain('flu-status',
    { 's': [s1, s2, s3], 'i': [i1, i2, i3], 'r': [r1, r2, r3] })
    # s - susceptible
    # i - infectious
    # r - recovered

    sites = { 'home': Site('h'), 'work': Site('w') }

    probe_grp_size_flu = GroupSizeProbe.by_attr('flu', 'flu-status', progress_flu_rule.get_states(), msg_mode=ProbeMsgMode.DISP, memo='Mass distribution across flu status')
    probe_grp_size_site = GroupSizeProbe.by_rel('site', Site.AT, sites.values(), msg_mode=ProbeMsgMode.DISP, memo='Mass distribution across sites')

    data = ""
    s = Simulation()
    s.add_rule(progress_flu_rule)
    s.add_probe(probe_grp_size_flu)
    s.add_group(Group('g0', gsize, { 'flu-status': 's' }))
    sys.stdout = open('out.dat', 'w')
    s.run(int(run))
    sys.stdout.close()

    with open('out.dat') as file:
        data = file.readlines()
        for line in data:
            st.write(line)
Exemple #3
0
def sim01(iter_cnt):
    sim = (Simulation().add([
        ProgressFluRule(),
        GroupSizeProbe.by_attr('flu',
                               'flu', ['s', 'e', 'r'],
                               msg_mode=ProbeMsgMode.CUMUL),
        Group(m=1000)
    ]).run(iter_cnt))
    print(sim.probes[0].get_msg())
    print()
Exemple #4
0
def sim02(iter_cnt):
    sim = (Simulation().add([
        ProgressFluIncomeRule(),
        GroupSizeProbe.by_attr('flu',
                               'flu', ['s', 'e', 'r'],
                               msg_mode=ProbeMsgMode.CUMUL),
        Group(m=500, attr={'income': 'l'}),
        Group(m=500, attr={'income': 'm'})
    ]).run(iter_cnt))
    print(sim.probes[0].get_msg())
    print()
Exemple #5
0
Based on the simulation from: sim/04-flu-prog/sim.py
'''

from pram.data import GroupSizeProbe, ProbeMsgMode
from pram.entity import AttrFluStage, Group, GroupSplitSpec, Site
from pram.rule import GoToRule, GoToAndBackTimeAtRule, TimeInt
from pram.sim import Simulation, SimulationConstructionError, SimulationConstructionWarning, TimeHour

from rules import ProgressFluRule

# ----------------------------------------------------------------------------------------------------------------------
sites = {'home': Site('h'), 'work': Site('w')}

probe_grp_size_flu = GroupSizeProbe.by_attr(
    'flu',
    'flu-stage',
    AttrFluStage,
    msg_mode=ProbeMsgMode.DISP,
    memo='Mass distribution across flu stages')

# ----------------------------------------------------------------------------------------------------------------------
# (1) A proper simulation:

print('(1)')
s = (Simulation(TimeHour(6), 16).add_rule(ProgressFluRule()).add_rule(
    GoToAndBackTimeAtRule()).add_probe(probe_grp_size_flu).new_group(
        '0', 1000).set_attr('flu-stage', AttrFluStage.NO).commit())

print(f'Attributes : {s.last_run.attr_used}')
print(f'Relations  : {s.last_run.rel_used}')

print()
Exemple #6
0
            ]
        if group.has_attr({'flu': 'I'}):
            return [
                GroupSplitSpec(p=0.5, attr_set={'flu': 'I'}),
                GroupSplitSpec(p=0.5, attr_set={'flu': 'R'}),
            ]
        if group.has_attr({'flu': 'R'}):
            return [
                GroupSplitSpec(p=0.7, attr_set={'flu': 'R'}),
                GroupSplitSpec(p=0.3, attr_set={'flu': 'S'}),
            ]


probe_grp_size_flu = GroupSizeProbe.by_attr(
    'flu',
    'flu', ['S', 'I', 'R'],
    msg_mode=ProbeMsgMode.DISP,
    persistance=ProbePersistanceDB(),
    memo='Mass distribution across flu status')

p = GroupSizeProbe.by_attr('flu',
                           'flu', ['S', 'I', 'R'],
                           persistance=ProbePersistanceDB())

(Simulation().add_probe(
    GroupSizeProbe.by_attr('flu',
                           'flu', ['S', 'I', 'R'],
                           msg_mode=ProbeMsgMode.DISP)).add_probe(p).add_rule(
                               SIRRule()).add_group(
                                   Group(m=1000, attr={'flu': 'S'})).run(26))

series = [{
Exemple #7
0
class FluSpikeEvent(Event):
    def __init__(self, t=TimeAlways()):
        super().__init__(t=t, name='flu-spike-evt')

    def apply(self, pop, group, iter, t):
        return [
            GroupSplitSpec(p=0.90, attr_set={ 'flu': 'i' }),
            GroupSplitSpec(p=0.10)
        ]

    def is_applicable(self, group, iter, t):
        return super().is_applicable(group, iter, t) and iter == 30 and (group.ha({ 'flu': 's' }) or group.ha({ 'flu': 'r' }))


(Simulation().
    add_probe(GroupSizeProbe.by_attr('flu', 'flu', ['s', 'i', 'r'], msg_mode=ProbeMsgMode.DISP)).
    add_rule(SIRSModel('flu', beta=0.05, gamma=0.50, alpha=0.10)).
    add_rule(FluSpikeEvent()).
    add_group(Group(m=1000, attr={ 'flu': 's' })).
    run(48)
)


# ----------------------------------------------------------------------------------------------------------------------
# dpath_cwd = os.path.dirname(__file__)
# fpath_db  = os.path.join(dpath_cwd, f'sim.sqlite3')
#
# if os.path.isfile(fpath_db):
#     os.remove(fpath_db)
#
# probe = GroupSizeProbe(
Exemple #8
0
# (0) Init:

progress_flu_rule = DiscreteInvMarkovChain('flu-status', {
    's': [0.95, 0.05, 0.00],
    'i': [0.00, 0.50, 0.50],
    'r': [0.10, 0.00, 0.90]
})
# s - susceptible
# i - infectious
# r - recovered

sites = {'home': Site('h'), 'work': Site('w')}

probe_grp_size_flu = GroupSizeProbe.by_attr(
    'flu',
    'flu-status',
    progress_flu_rule.get_states(),
    msg_mode=ProbeMsgMode.DISP,
    memo='Mass distribution across flu status')
probe_grp_size_site = GroupSizeProbe.by_rel(
    'site',
    Site.AT,
    sites.values(),
    msg_mode=ProbeMsgMode.DISP,
    memo='Mass distribution across sites')

# ----------------------------------------------------------------------------------------------------------------------
# (1) Simulations testing the basic operations on groups and rules:

# (1.1) A single-group, single-rule (1g.1r) simulation:
s = Simulation()
s.add_rule(progress_flu_rule)
Exemple #9
0
    def setup(self, pop, group):
        return [GroupSplitSpec(p=1.0, attr_set={'stage': 's'})]


# ----------------------------------------------------------------------------------------------------------------------

# ----------------------------------------------------------------------------------------------------------------------

if __name__ == "__main__":
    i = 1
    eq = 50
    print(eq * "=", "starting sim {}".format(i), eq * "=")
    sim = (Simulation().add([
        StartupGrowthRule(),
        GroupSizeProbe.by_attr('stage',
                               'stage',
                               ['s', 'a', 'b', 'c', 'success', 'failure'],
                               msg_mode=ProbeMsgMode.CUMUL),
        Group(m=10000)
    ]).run(10))
    print(sim.probes[0].get_msg())
    print()

    i += 1
    print(eq * "=", "starting sim {}".format(i), eq * "=")
    sim = (Simulation().add([
        StartupLocationRule(),
        GroupSizeProbe(
            'startup-location',
            [
                GroupQry(attr={
                    'location': 'usa',
Exemple #10
0
    # Probe:
    probes_grp_size_flu_school.append(
        GroupSizeProbe(name=f'flu-{s.name}',
                       queries=[
                           GroupQry(attr={'flu': 's'}, rel={'school': site}),
                           GroupQry(attr={'flu': 'i'}, rel={'school': site}),
                           GroupQry(attr={'flu': 'r'}, rel={'school': site})
                       ],
                       qry_tot=GroupQry(rel={'school': site}),
                       var_names=['ps', 'pi', 'pr', 'ns', 'ni', 'nr'],
                       persistence=probe_persistence,
                       memo=f'Flu at school {s.name.upper()}'))

probe_grp_size_flu = GroupSizeProbe.by_attr(
    'flu',
    'flu', ['s', 'i', 'r'],
    msg_mode=ProbeMsgMode.DISP,
    memo='Mass distribution across flu stages')
probe_grp_size_site = GroupSizeProbe.by_rel(
    'site',
    Site.AT,
    sites.values(),
    msg_mode=ProbeMsgMode.DISP,
    memo='Mass distribution across sites')

# ----------------------------------------------------------------------------------------------------------------------
# (2) Simulation:

if __name__ == '__main__':
    sim = (
        Simulation().
Exemple #11
0
def analysis_simple(tx_dict=None, population=10000, iteration=16):

    if tx_dict is None:
        tx_dict = dict(
            round_seed_a=0.3,
            round_seed_failure=0.67,
            round_a_b=0.2,
            round_a_failure=0.6,
            round_b_c=0.3,
            round_b_failure=0.4,
            round_c_success=0.5,
            round_c_failure=0.5,
            round_success_success=1,
            round_success_failure=0,
            round_failure_success=0,
            round_failure_failure=1,
            # round_a_a=0.2,
            # round_b_b=0.2,
            # round_c_c=0.2,
        )
    old_p = GroupSizeProbe.by_attr(
        'stage',
        'stage', ['seed', 'a', 'b', 'c', 'success', 'failure'],
        persistance=ProbePersistanceMem(),
        msg_mode=ProbeMsgMode.CUMUL)
    p = GroupSizeProbe.by_attr('stage',
                               'stage',
                               ['seed', 'a', 'b', 'c', 'success', 'failure'],
                               persistance=ProbePersistanceDB())
    sim = (Simulation().add(
        [UserStartupGrowthRule(tx_dict), p,
         Group(m=population)]).run(iteration))
    series = [
        {
            'var': 'n0'
        },
        {
            'var': 'n1'
        },
        {
            'var': 'n2'
        },
        {
            'var': 'n3'
        },
        {
            'var': 'n4'
        },
        {
            'var': 'n5'
        },
    ]
    col_names = {
        'n0': 'seed',
        'n1': 'a',
        'n2': 'b',
        'n3': 'c',
        'n4': 'success',
        'n5': 'failure'
    }
    probe_data = p.probe_data(series)
    probe_frame: pd.DataFrame
    probe_frame = pd.DataFrame.from_dict(probe_data)
    probe_frame.rename(columns=col_names, inplace=True)
    probe_frame["i"] = probe_frame["i"] + 1
    initial_condition = {
        'seed': population,
        'a': 0,
        'b': 0,
        'c': 0,
        'success': 0,
        'failure': 0,
        'i': 0
    }
    probe_frame = pd.concat(
        [pd.DataFrame(initial_condition, index=[0]),
         probe_frame[:]]).reset_index(drop=True)
    probe_frame.drop(columns=['i'], inplace=True)
    print(probe_frame)
    d = probe_frame.iloc[0]
    print(d)
    # for chart
    plot_data = probe_frame.iloc[0]
    # probe_names = probe_frame
    print(plot_data.values)
    print(list(plot_data.index))

    # data_source = ColumnDataSource(probe_frame)

    return probe_frame
Exemple #12
0
def analysis_Complex_version2(tx_dict=None, population=100, iteration=20):
    np.set_printoptions(suppress=True)
    if tx_dict is None:
        tx_dict = dict(
            round_seed_a=0.3,
            round_seed_failure=0.67,
            round_a_b=0.2,
            round_a_failure=0.3,
            round_b_c=0.3,
            round_b_failure=0.2,
            round_c_success=0.3,
            round_c_failure=0.4,
            round_success_success=1,
            round_success_failure=0,
            round_failure_success=0,
            round_failure_failure=1,
            round_a_a=0.4,
            round_b_b=0.3,
            round_c_c=0.3,
        )
        # seed = 1, a = 0, b = 0, c = 0, success = 0, failure = 0
    tx_matrix = np.array([
        [
            0, tx_dict['round_seed_a'], 0, 0,
            1 - tx_dict['round_seed_failure'] - tx_dict['round_seed_a'],
            tx_dict['round_seed_failure']
        ],
        [
            0, tx_dict['round_a_a'], tx_dict['round_a_b'], 0,
            1 - tx_dict['round_a_failure'] - tx_dict['round_a_a'] -
            tx_dict['round_a_b'], tx_dict['round_a_failure']
        ],
        [
            0, 0, tx_dict['round_b_b'], tx_dict['round_b_c'],
            1 - tx_dict['round_b_failure'] - tx_dict['round_b_c'] -
            tx_dict['round_b_b'], tx_dict['round_b_failure']
        ],
        [
            0, 0, 0, tx_dict['round_c_c'],
            1 - tx_dict['round_c_failure'] - tx_dict['round_c_c'],
            tx_dict['round_c_failure']
        ],
        [
            0, 0, 0, 0, 1 - tx_dict['round_success_failure'],
            tx_dict['round_success_failure']
        ],
        [
            0, 0, 0, 0, 1 - tx_dict['round_failure_failure'],
            tx_dict['round_failure_failure']
        ],
    ])

    old_p = GroupSizeProbe.by_attr(
        'stage',
        'stage', ['seed', 'a', 'b', 'c', 'success', 'failure'],
        persistance=ProbePersistanceMem(),
        msg_mode=ProbeMsgMode.CUMUL)
    p = GroupSizeProbe.by_attr('stage',
                               'stage',
                               ['seed', 'a', 'b', 'c', 'success', 'failure'],
                               persistance=ProbePersistanceDB())
    sim = (Simulation().add(
        [UserStartupGrowthRuleVersion2(tx_dict), p,
         Group(m=population)]).run(iteration))
    print(sim.probes[0].get_msg())
    print()

    series = [
        {
            'var': 'p0'
        },
        {
            'var': 'p1'
        },
        {
            'var': 'p2'
        },
        {
            'var': 'p3'
        },
        {
            'var': 'p4'
        },
        {
            'var': 'p5'
        },
    ]
    col_names = {
        "p0": "p_seed",
        "p1": "p_a",
        "p2": "p_b",
        "p3": "p_c",
        "p4": "p_success",
        "p5": "p_failure"
    }
    names = ["p0", "p1", "p2", "p3", "p4", "p5"]
    probe_data: dict
    probe_data = p.probe_data(series)
    probe_data_ordered = OrderedDict()

    for name in names:
        probe_data_ordered[col_names.get(name)] = probe_data.pop(name)
    # pp(probe_data_ordered)

    probe_data_frame = pd.DataFrame.from_dict(probe_data_ordered)
    pp(probe_data_frame)

    value_df = pd.DataFrame(columns=list(probe_data_ordered.keys()))
    # print(value_df)

    # proportion of investment
    investment_proportion = OrderedDict(seed=1,
                                        a=0,
                                        b=0,
                                        c=0,
                                        success=0,
                                        failure=0)

    # hyper-parameters
    # stage_multiplier = {"seed": 3, "a": 5, "b": 7, "c": 5, "success": 5, "failure": 0}
    # stage_multiplier_dict = OrderedDict(seed=3, a=5, b=7, c=5, success=5, failure=0)
    stage_multiplier_list = [1, 1.1, 1.25, 1.3, 1, 0]
    # stage_multiplier_list = [1, 2, 3, 4, 5, 0]

    inital_investment_dict = OrderedDict(
        seed=population * investment_proportion.get("seed"),
        a=population * investment_proportion.get("a"),
        b=population * investment_proportion.get("b"),
        c=population * investment_proportion.get("c"),
        success=population * investment_proportion.get("success"),
        failure=population * investment_proportion.get("failure"),
    )

    sim_length = len(probe_data_ordered.get('p_a'))
    valuation_list = [population]
    for i in range(sim_length):
        # print(valuation_list[i] * probe_data_frame.iloc[[i]])
        val = valuation_list[i] * probe_data_frame.iloc[i]
        val = stage_multiplier_list * val
        valuation_list.append(np.sum(val))
        print(valuation_list)

    # print("sim_length",sim_length)
    #
    # # total_investment = sum(inital_investment)
    # print("inital_investment",inital_investment_dict)

    probe_frame: pd.DataFrame
    probe_frame = pd.DataFrame.from_dict(probe_data)
    probe_frame.rename(columns=col_names, inplace=True)

    probe_frame["i"] = probe_frame["i"] + 1
    initial_condition = {
        'seed': population,
        'a': 0,
        'b': 0,
        'c': 0,
        'success': 0,
        'failure': 0,
        'i': 0,
        "p_seed": 1,
        "p_a": 0,
        "p_b": 0,
        "p_c": 0,
        "p_success": 0,
        "p_failure": 0
    }
    probe_frame = pd.concat(
        [pd.DataFrame(initial_condition, index=[0]),
         probe_frame[:]]).reset_index(drop=True)
    probe_frame.drop(columns=['i'], inplace=True)
    print(probe_frame)
    # d = probe_frame.iloc[0]
    # print(d)
    # for chart
    plot_data = probe_frame.iloc[0]
    # probe_names = probe_frame
    print(plot_data.values)
    print(list(plot_data.index))

    # data_source = ColumnDataSource(probe_frame)
    probe_frame.to_csv("data_file.csv")
    return probe_frame
Exemple #13
0
def analysis_Complex_version1(tx_dict=None, population=10000, iteration=20):

    if tx_dict is None:
        tx_dict = dict(
            round_seed_a=0.3,
            round_seed_failure=0.67,
            round_a_b=0.2,
            round_a_failure=0.3,
            round_b_c=0.3,
            round_b_failure=0.2,
            round_c_success=0.3,
            round_c_failure=0.4,
            round_success_success=1,
            round_success_failure=0,
            round_failure_success=0,
            round_failure_failure=1,
            round_a_a=0.4,
            round_b_b=0.3,
            round_c_c=0.3,
        )
    tx_numpy_array = np.array([])
    old_p = GroupSizeProbe.by_attr(
        'stage',
        'stage', ['seed', 'a', 'b', 'c', 'success', 'failure'],
        persistance=ProbePersistanceMem(),
        msg_mode=ProbeMsgMode.CUMUL)
    p = GroupSizeProbe.by_attr('stage',
                               'stage',
                               ['seed', 'a', 'b', 'c', 'success', 'failure'],
                               persistance=ProbePersistanceDB())
    sim = (Simulation().add(
        [UserStartupGrowthRuleVersion2(tx_dict), p,
         Group(m=population)]).run(iteration))
    print(sim.probes[0].get_msg())
    print()

    series = [
        {
            'var': 'p0'
        },
        {
            'var': 'p1'
        },
        {
            'var': 'p2'
        },
        {
            'var': 'p3'
        },
        {
            'var': 'p4'
        },
        {
            'var': 'p5'
        },
        {
            'var': 'n0'
        },
        {
            'var': 'n1'
        },
        {
            'var': 'n2'
        },
        {
            'var': 'n3'
        },
        {
            'var': 'n4'
        },
        {
            'var': 'n5'
        },
    ]
    col_names = {
        'n0': 'seed',
        'n1': 'a',
        'n2': 'b',
        'n3': 'c',
        'n4': 'success',
        'n5': 'failure',
        "p0": "p_seed",
        "p1": "p_a",
        "p2": "p_b",
        "p3": "p_c",
        "p4": "p_success",
        "p5": "p_failure"
    }
    probe_data = p.probe_data(series)
    probe_frame: pd.DataFrame
    probe_frame = pd.DataFrame.from_dict(probe_data)
    probe_frame.rename(columns=col_names, inplace=True)
    probe_frame["i"] = probe_frame["i"] + 1
    initial_condition = {
        'seed': population,
        'a': 0,
        'b': 0,
        'c': 0,
        'success': 0,
        'failure': 0,
        'i': 0,
        "p_seed": 1,
        "p_a": 0,
        "p_b": 0,
        "p_c": 0,
        "p_success": 0,
        "p_failure": 0
    }
    probe_frame = pd.concat(
        [pd.DataFrame(initial_condition, index=[0]),
         probe_frame[:]]).reset_index(drop=True)
    probe_frame.drop(columns=['i'], inplace=True)
    print(probe_frame)
    # d = probe_frame.iloc[0]
    # print(d)
    # for chart
    plot_data = probe_frame.iloc[0]
    # probe_names = probe_frame
    print(plot_data.values)
    print(list(plot_data.index))

    # data_source = ColumnDataSource(probe_frame)
    probe_frame.to_csv("data_file.csv")
    return probe_frame
Exemple #14
0
Original PRAM Simulation from:
    pram/src/sim/04-flu-prog-01/sim.py
"""

from pram.data import ProbePersistenceDB, ProbeMsgMode, GroupSizeProbe
from pram.entity import Group, GroupQry, GroupSplitSpec
from pram.model.model import MCSolver
from pram.model.epi import SIRSModel
from pram.sim import Simulation

import matplotlib.pyplot as plt
import time

# ----------------------------------------------------------------------------------------------------------------------
sir_probe = GroupSizeProbe.by_attr('flu',
                                   'flu', ['s', 'i', 'r'],
                                   persistence=ProbePersistenceDB(),
                                   msg_mode=ProbeMsgMode.DISP)

s = (Simulation().add_probe(sir_probe).add_rule(
    SIRSModel('flu', beta=0.05, gamma=0.50, alpha=0.10,
              solver=MCSolver())).add_group(Group(m=1000, attr={'flu': 's'})))

runs = 48

t0 = time.time()
s.run(runs)
time_elapsed = time.time() - t0
print(f'Time elapsed in {runs} runs: {time_elapsed} seconds')

series = [
    {
Exemple #15
0
'''
A test simulation involving the SEIR flu model in isolation.
'''

from pram.data import GroupSizeProbe, ProbeMsgMode
from pram.entity import Group, Site
from pram.rule import SEIRFluRule
from pram.sim import Simulation

rand_seed = 1928
probe_grp_size_flu = GroupSizeProbe.by_attr(
    'flu',
    SEIRFluRule.ATTR,
    SEIRFluRule.State,
    msg_mode=ProbeMsgMode.DISP,
    memo='Mass distribution across flu states')

(Simulation().set().rand_seed(rand_seed).done().add().rule(
    SEIRFluRule()).probe(probe_grp_size_flu).done().new_group(
        1000).done().summary(True, 0, 0, 0, 0,
                             (0, 1)).run(16).compact().summary(
                                 False, 8, 0, 0, 0, (1, 0)))

# (Simulation().
#     set().
#         rand_seed(rand_seed).
#         pragma_analyze(False).
#         pragma_autocompact(True).
#         done().
#     add().
#         rule(SEIRFluRule()).
Exemple #16
0
            return [
                GroupSplitSpec(p=0.75, attr_set={'value': 0 * failure_value}),
                GroupSplitSpec(p=0.2, attr_set={'value': 2 * failure_value}),
                GroupSplitSpec(p=0.05, attr_set={'value': 1.5 * failure_value})
            ]

    def is_applicable(self, group, iter, t):
        return super().is_applicable(group, iter, t) and group.has_attr(
            ['stage', 'value'])

    def setup(self, pop, group):
        return [GroupSplitSpec(p=1.0, attr_set={"value": 1000})]


old_p = GroupSizeProbe.by_attr('stage',
                               'stage', ['c', 'success', 'failure'],
                               persistance=ProbePersistanceMem(),
                               msg_mode=ProbeMsgMode.CUMUL)

probe2 = GroupSizeProbe.by_attr("value",
                                "value", ['c', 'success', 'failure'],
                                persistance=ProbePersistanceMem(),
                                msg_mode=ProbeMsgMode.DISP)

# c_group = Group(name="c", m = 100, attr = {"stage" : "c", "value": 1000})
# success_group = Group(name="success", m = 100, attr ={"stage":"success", "value" : 1000})
# failure_group = Group(name="failure", m = 100, attr = {"stage": "failure", "value" : 1000})

c_group = Group(name="c", m=100, attr={"stage": "c"})
success_group = Group(name="success", m=100, attr={"stage": "success"})
failure_group = Group(name="failure", m=100, attr={"stage": "failure"})
Exemple #17
0
'''
A simulation implementing the SIRS model of infectious disease spread in a population and in particular demonstrating
probe plotting.
'''

from pram.data import ProbePersistenceMem, GroupSizeProbe
from pram.entity import Group
from pram.model.epi import SIRSModel
from pram.sim import Simulation

# ----------------------------------------------------------------------------------------------------------------------
p = GroupSizeProbe.by_attr('flu',
                           'flu', ['s', 'i', 'r'],
                           persistence=ProbePersistenceMem())

(Simulation().add_probe(p).add_rule(
    SIRSModel('flu', beta=0.05, gamma=0.50,
              alpha=0.10)).add_group(Group(m=1000, attr={'flu':
                                                         's'})).run(100))

series = [{
    'var': 'p0',
    'lw': 0.75,
    'ls': 'solid',
    'marker': 'o',
    'color': 'red',
    'ms': 0,
    'lbl': 'S'
}, {
    'var': 'p1',
    'lw': 0.75,