Exemple #1
0
    def __init__(self,
                 env_harshness,
                 env_harshness_death_mult=0.001,
                 migration_death_mult=0.05,
                 name='migration',
                 t=TimeAlways(),
                 i=IterAlways()):
        super().__init__(
            name,
            t,
            i,
            group_qry=GroupQry(
                cond=[lambda g: g.has_attr({'is-migrating': True})]))

        self.env_harshness = env_harshness  # [0=benign .. 1=harsh]

        self.env_harshness_death_mult = env_harshness_death_mult
        self.migration_death_mult = migration_death_mult
Exemple #2
0
    def __init__(self,
                 severity,
                 scale,
                 severity_death_mult=0.0001,
                 scale_migration_mult=0.01,
                 name='conflict',
                 t=TimeAlways(),
                 i=IterAlways()):
        super().__init__(
            name,
            t,
            i,
            group_qry=GroupQry(
                cond=[lambda g: g.has_attr({'is-migrating': False})]))

        self.severity = severity  # [0=benign .. 1=lethal]
        self.scale = scale  # [0=contained .. 1=wide-spread]

        self.severity_death_mult = severity_death_mult
        self.scale_migration_mult = scale_migration_mult
Exemple #3
0
def make_sir(beta, gamma, t=TimeAlways(), i=IterAlways(), dt=0.1):
    def f_sir_model(t, state):
        '''
        [1] Kermack WO & McKendrick AG (1927) A Contribution to the Mathematical Theory of Epidemics. Proceedings of the
            Royal Society A. 115(772), 700--721.

        http://www.public.asu.edu/~hnesse/classes/sir.html
        '''

        s, i, r = state
        n = s + i + r
        return [-beta * s * i / n, beta * s * i / n - gamma * i, gamma * i]

    return ODESystemMass(f_sir_model, [
        DotMap(attr={'flu': 's'}),
        DotMap(attr={'flu': 'i'}),
        DotMap(attr={'flu': 'r'})
    ],
                         t=t,
                         i=i,
                         dt=dt)
Exemple #4
0
# sir_b1 = make_sir(0.50, 0.02, i=IterInt(1000,0), dt=0.1)

# 05 Two overlapping and time-unbounded SIR models (B1 starts with a fixed delay):
# sir_a1 = make_sir(0.10, 0.05, i=IterAlways(), dt=0.1)
# def make_sir_b1_fixed_delay(iter0):
#     return make_sir(0.50, 0.02, i=IterInt(iter0,0), dt=0.1)

# 06 Two overlapping and time-unbounded SIR models (B1 starts with a random delay):
# sir_a1 = make_sir(0.10, 0.05, i=IterAlways(), dt=0.1)
# def make_sir_b1_random_delay(iter0=900, iter0_dist=gamma(a=5.0, loc=0.0, scale=35.0)):
#     iter0_rnd = iter0_dist.rvs()
#     # print(f'rand-iter: {iter0_rnd}')
#     return make_sir(0.50, 0.02, i=IterInt(iter0 + iter0_rnd,0), dt=0.1)

# 07 Two overlapping and time-unbounded SIR models (B1 starts with a random delay and a random 'gamma' parameter):
sir_a1 = make_sir(0.10, 0.05, i=IterAlways(), dt=0.1)


def make_sir_b1_random_delay_gamma(iter0=900,
                                   iter0_dist=gamma(a=5.0, loc=5.0,
                                                    scale=25.0),
                                   gamma=uniform(loc=0.01, scale=0.14)):
    iter0_rnd = iter0_dist.rvs()
    gamma_rnd = gamma.rvs()
    return make_sir(0.50, gamma_rnd, i=IterInt(iter0 + iter0_rnd, 0), dt=0.1)


# ----------------------------------------------------------------------------------------------------------------------
# The recurrent flu process: