def processAndClassify(frame):
	backgroundClass = 3
	predictionArray = []
	centroidArray   = []
	grayScaleInput = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
	meanShiftAdapResult = prePro.adapThresh(grayScaleInput)
	contours, hierarchy = prePro.contourFind(meanShiftAdapResult)
	for cnt in contours: 
		if cv2.contourArea(cnt)>500:
			[x, y, w, h] = cv2.boundingRect(cnt)
			extendBBox = 5
	           roiImage = grayScaleInput[y-extendBBox:y+h+extendBBox, x-extendBBox:x+w+extendBBox]
			kp, des, roiImageKeyPoints = detDes.featureDetectDesORB(roiImage)
			if np.size(kp)>0:
Exemple #2
0
for fileName in fileList:
    image = cv2.imread(fileName)

    grayScaleInput = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # Apply meanshift on the RGB image
    meanShiftResult = prePro.meanShift(image)
    # Convert the result of the Mean shifted image into Grayscale
    meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY)
    # Apply adaptive thresholding on the resulting greyscale image
    meanShiftAdapResult = prePro.adapThresh(meanShiftGray)
    # Draw Contours on the Input image with results from the meanshift
    contourPlot = prePro.contourDraw(image, meanShiftAdapResult)
    cv2.imshow('contourplot', contourPlot)
    # Find the contours on the mean shifted image
    contours, hierarchy = prePro.contourFind(meanShiftAdapResult)

    ## Use Histogram equalization
    boundBoxContour = grayScaleInput.copy()
    count = 0
    # For each contour
    for cnt in contours:
        # If the area covered by the contour is greater than 500 pixels
        if cv2.contourArea(cnt) > 500:
            # Get the bounding box of the contour
            [x, y, w, h] = cv2.boundingRect(cnt)
            # Get the moments of the each contour for computing the centroid of the contour
            moments = cv2.moments(cnt)
            if moments['m00'] != 0:
                cx = int(moments['m10'] / moments['m00'])  # cx = M10/M00
                cy = int(moments['m01'] / moments['m00'])  # cy = M01/M00
for fileName in fileList:
    image = cv2.imread(fileName)

    grayScaleInput = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	# Apply meanshift on the RGB image
    meanShiftResult = prePro.meanShift(image)
	# Convert the result of the Mean shifted image into Grayscale
    meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY)
	# Apply adaptive thresholding on the resulting greyscale image
    meanShiftAdapResult = prePro.adapThresh(meanShiftGray)
	# Draw Contours on the Input image with results from the meanshift 
    contourPlot = prePro.contourDraw(image, meanShiftAdapResult)
    cv2.imshow('contourplot',contourPlot)
    	# Find the contours on the mean shifted image
    contours, hierarchy = prePro.contourFind(meanShiftAdapResult)

 ## Use Histogram equalization    
    boundBoxContour = grayScaleInput.copy()
    count = 0    
	# For each contour
    for cnt in contours:
        # If the area covered by the contour is greater than 500 pixels
        if cv2.contourArea(cnt)>500:
            # Get the bounding box of the contour
            [x, y, w, h] = cv2.boundingRect(cnt)
            # Get the moments of the each contour for computing the centroid of the contour
            moments = cv2.moments(cnt)
            if moments['m00']!=0:
                cx = int(moments['m10']/moments['m00'])         # cx = M10/M00
                cy = int(moments['m01']/moments['m00'])         # cy = M01/M00