def processAndClassify(frame): backgroundClass = 3 predictionArray = [] centroidArray = [] # Convert the image into a grayscale image grayScaleInput = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Apply meanshift on the RGB image meanShiftResult = prePro.meanShift(frame) # Convert the result of the Mean shifted image into Grayscale meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding on the resulting greyscale image meanShiftAdapResult = prePro.adapThresh(meanShiftGray) # Draw Contours on the Input image with results from the meanshift contourPlot = prePro.contourDraw(frame, meanShiftAdapResult) # Find the contours on the mean shifted image contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult) # Find the contours on the mean shifted image boundBoxContour = grayScaleInput.copy() frameBoundingBox = frame.copy() # For each contour for cnt in contours: # If the area covered by the contour is greater than 500 pixels if cv2.contourArea(cnt)>20: # Get the bounding box of the contour [x, y, w, h] = cv2.boundingRect(cnt) # Get the moments of the each contour for computing the centroid of the contour moments = cv2.moments(cnt) if moments['m00']!=0: cx = int(moments['m10']/moments['m00']) # cx = M10/M00 cy = int(moments['m01']/moments['m00']) # cy = M01/M00 centroid = (cx,cy) # cx,cy are the centroid of the contour extendBBox = 10 # Extend it by 10 pixels to avoid missing the key points on the edges roiImage = boundBoxContour[y-extendBBox:y+h+extendBBox, x-extendBBox:x+w+extendBBox] roiImageFiltered = roiImage # Detect the corner key points kp, roiKeyPointImage = detDes.featureDetectCorner(roiImageFiltered) # Use the ORB feature detector and descriptor on the contour kp, des, roiKeyPointImage = detDes.featureDescriptorORB(roiImageFiltered, kp) if np.size(kp)>0: histPoints = tH.histogramContour(des) prediction = tC.classify(np.float32(histPoints)) ## If the predicted class is not the background class then add the prediction to the prediction array and get its centroid if prediction != backgroundClass: cv2.rectangle(frameBoundingBox,(x,y),(x+w,y+h),(0,255,0),2) return contourPlot
def processAndClassify(frame): backgroundClass = 3 predictionArray = [] centroidArray = [] # Convert the image into a grayscale image grayScaleInput = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Apply meanshift on the RGB image meanShiftResult = prePro.meanShift(frame) # Convert the result of the Mean shifted image into Grayscale meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding on the resulting greyscale image meanShiftAdapResult = prePro.adapThresh(meanShiftGray) # Draw Contours on the Input image with results from the meanshift contourPlot = prePro.contourDraw(frame, meanShiftAdapResult) #cv2.imwrite('contourPlot.png',contourPlot) # Find the contours on the mean shifted image contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult) # Find the contours on the mean shifted image boundBoxContour = grayScaleInput.copy() frameBoundingBox = frame.copy() # For each contour for cnt in contours: # If the area covered by the contour is greater than 500 pixels if cv2.contourArea(cnt) > 20: # Get the bounding box of the contour [x, y, w, h] = cv2.boundingRect(cnt) # Get the moments of the each contour for computing the centroid of the contour moments = cv2.moments(cnt) if moments['m00'] != 0: cx = int(moments['m10'] / moments['m00']) # cx = M10/M00 cy = int(moments['m01'] / moments['m00']) # cy = M01/M00 centroid = (cx, cy) # cx,cy are the centroid of the contour extendBBox = 10 # Extend it by 10 pixels to avoid missing the key points on the edges roiImage = boundBoxContour[y - extendBBox:y + h + extendBBox, x - extendBBox:x + w + extendBBox] roiImageFiltered = roiImage # Detect the corner key points kp, roiKeyPointImage = detDes.featureDetectCorner( roiImageFiltered) # Use the ORB feature detector and descriptor on the contour kp, des, roiKeyPointImage = detDes.featureDescriptorORB( roiImageFiltered, kp) if np.size(kp) > 0: histPoints = tH.histogramContour(des) prediction = tC.classify(np.float32(histPoints)) ## If the predicted class is not the background class then add the prediction to the prediction array and get its centroid if prediction != backgroundClass: cv2.rectangle(frameBoundingBox, (x, y), (x + w, y + h), (0, 255, 0), 2) return predictionArray, centr
import cv2 from matplotlib import pyplot as plt import preObj as prePro import detectorDescriptor2 as detDes import glob import os formatName = '*.jpg' fileList = glob.glob('dataset/' + formatName) for fileName in fileList: image = cv2.imread(fileName) grayScaleInput = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply meanshift on the RGB image meanShiftResult = prePro.meanShift(image) # Convert the result of the Mean shifted image into Grayscale meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding on the resulting greyscale image meanShiftAdapResult = prePro.adapThresh(meanShiftGray) # Draw Contours on the Input image with results from the meanshift contourPlot = prePro.contourDraw(image, meanShiftAdapResult) cv2.imshow('contourplot', contourPlot) # Find the contours on the mean shifted image contours, hierarchy = prePro.contourFind(meanShiftAdapResult) ## Use Histogram equalization boundBoxContour = grayScaleInput.copy() count = 0 # For each contour for cnt in contours:
listDir.append("TrainingSetNao/phone/red_blinds_closed/") listDir.append("TrainingSetNao/phone/red_blinds_open/") listDir.append("TrainingSetNew/apple/") listDir.append("TrainingSetNew/banana/") listDir.append("TrainingSetNew/cube/") dirCount = 0 for direct in listDir: fileList = glob.glob(rootInputName + listDir[dirCount] + formatName) print("Current Directory Name:" + rootInputName + listDir[dirCount]) count = 0 for files in fileList: inputImage = cv2.imread(fileList[count]) print("Processing Image " + fileList[count]) grayScaleInput = cv2.cvtColor(inputImage, cv2.COLOR_BGR2GRAY) meanShiftResult = prePro.meanShift(inputImage) meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) meanShiftAdapResult = prePro.adapThresh(meanShiftGray) contourPlot = prePro.contourDraw(inputImage, meanShiftAdapResult) contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult) boundBoxContour = grayScaleInput.copy() counter = 0 for cnt in contours: if cv2.contourArea(cnt) > 500: print("Processing Contour no.", str(counter)) [x, y, w, h] = cv2.boundingRect(cnt) extendBBox = 10 roiImage = boundBoxContour[y - extendBBox:y + h + extendBBox, x - extendBBox:x + w + extendBBox]
rootOutputName = "TrainingSet/newDatasetPrep/contours/" rootMeanName = "TrainingSet/newDatasetPrep/meanShift/" rootAdapThreshold = "TrainingSet/newDatasetPrep/adapThreshold/" rootContourDraw = "TrainingSet/newDatasetPrep/contourDraw/" formatName = "*.jpg" fileList = glob.glob(rootInputName + formatName) print ("Current Directory Name:" + rootInputName) count = 0 for files in fileList: inputImage=cv2.imread(fileList[count]) fileName = os.path.basename(fileList[count]) print ("Processing Image " + fileList[count]) grayScaleInput = cv2.cvtColor(inputImage, cv2.COLOR_BGR2GRAY) meanShiftResult = prePro.meanShift(inputImage) cv2.imwrite(rootMeanName + fileName, meanShiftResult) meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) meanShiftAdapResult = prePro.adapThresh(meanShiftGray) cv2.imwrite(rootAdapThreshold + fileName, meanShiftAdapResult) contourPlot = prePro.contourDraw(inputImage, meanShiftAdapResult) cv2.imwrite(rootContourDraw + fileName, contourPlot) print ("Preprocessing Results Written.") contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult) boundBoxContour = grayScaleInput.copy() counter = 0 for cnt in contours:
import cv2 from matplotlib import pyplot as plt import preObj as prePro import detectorDescriptor2 as detDes import glob import os formatName = '*.jpg' fileList = glob.glob('dataset/' + formatName) for fileName in fileList: image = cv2.imread(fileName) grayScaleInput = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Apply meanshift on the RGB image meanShiftResult = prePro.meanShift(image) # Convert the result of the Mean shifted image into Grayscale meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding on the resulting greyscale image meanShiftAdapResult = prePro.adapThresh(meanShiftGray) # Draw Contours on the Input image with results from the meanshift contourPlot = prePro.contourDraw(image, meanShiftAdapResult) cv2.imshow('contourplot',contourPlot) # Find the contours on the mean shifted image contours, hierarchy = prePro.contourFind(meanShiftAdapResult) ## Use Histogram equalization boundBoxContour = grayScaleInput.copy() count = 0 # For each contour for cnt in contours:
#listDir.append("TrainingSetOccMul/") dirCount = 0 for direct in listDir: fileList = glob.glob(rootInputName + listDir[dirCount] + formatName) print("Current Directory Name:" + rootInputName + listDir[dirCount]) count = 0 for files in fileList: frame = cv2.imread(fileList[count]) base = os.path.basename(files) fileName = os.path.splitext(base)[0] print("Processing Image " + fileList[count]) time_whole_begin = time.time() grayScaleInput = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Apply meanshift on the RGB image time_meanshift_begin = time.time() meanShiftResult = prePro.meanShift(frame) time_meanshift_end = time.time() # Convert the result of the Mean shifted image into Grayscale meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding on the resulting greyscale image meanShiftAdapResult = prePro.adapThresh(meanShiftGray) '''######################################################################################################################## Uncomment the following lines to add morphology Comment the following lines if morphology need not be used ############################################## Morphology begins ##########################################################################''' # kernel = np.ones((5,5),np.uint8) # opening = cv2.dilate(meanShiftAdapResult,kernel,iterations=1) # # Draw Contours on the Input image with results from the meanshift
def processAndClassify(frame,networkTopology, network,trainingParameters): objects = ['basket', 'kettle', 'milk', 'mug', 'Background']; #'coffeemug', 'kettleBackground','milkcartonBackground','trashcanBackground', 'mugBackground', backgroundClass = 3 predictionArray = [] centroidArray = [] labels = [] # Convert the image into a grayscale image framecopy = frame.copy() #grayScaleInput = cv2.cvtColor(framecopy, cv2.COLOR_BGR2GRAY) # Apply meanshift on the RGB image meanShiftResult = prePro.meanShift(np.uint8(framecopy)) #plt.imshow(meanShiftResult) # Convert the result of the Mean shifted image into Grayscale meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding on the resulting greyscale image meanShiftAdapResult = prePro.adapThresh(meanShiftGray) # kernel = np.ones((5,5),np.uint8) # opening = cv2.dilate(meanShiftAdapResult,kernel,iterations=1) # Draw Contours on the Input image with results from the meanshift # Find the contours on the mean shifted image contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult) ## Use Histogram equalabs #boundingBoxContour = opening boundBoxContour = framecopy.copy() #boundBoxContour = cv2.equalizeHist(grayScaleInput.copy()) #heatmap = frame.copy() #heatmapFromZeros = np.zeros(np.shape(frame)) count = 0 # For each contour for cnt in contours: prediction = None # If the area covered by the contour is greater than 500 pixels if cv2.contourArea(cnt)>500: # Get the bounding box of the contour [x, y, w, h] = cv2.boundingRect(cnt) # Get the moments of the each contour for computing the centroid of the contour moments = cv2.moments(cnt) if moments['m00']!=0: cx = int(moments['m10']/moments['m00']) # cx = M10/M00 cy = int(moments['m01']/moments['m00']) # cy = M01/M00 centroid = (cx,cy) # cx,cy are the centroid of the contour extendBBox20 = 20 extendBBox10 = 10 left = 0 right = 0 top = 0 bottom = 0 # #Extend it by 10 pixels to avoid missing the key points on the edges if x-extendBBox20 > 0: left = x-extendBBox20 elif x-extendBBox10 > 0: left = x-extendBBox10 else: left = x if y-extendBBox20 > 0: top = y-extendBBox20 elif y-extendBBox10 > 0: top = y-extendBBox10 else: top = y if x+w+extendBBox20 < boundBoxContour.shape[0]: right = x+w+extendBBox20 elif x+w+extendBBox10 < boundBoxContour.shape[0]: right = x+w+extendBBox10 else: right = x+w if y+h+extendBBox20 < boundBoxContour.shape[1]: bottom = y+h+extendBBox20 elif y+h+extendBBox10 < boundBoxContour.shape[1]: bottom = y+h+extendBBox10 else: bottom = y+h roiImage = boundBoxContour[top:bottom,left:right] #roiImage = boundBoxContour[y-extendBBox:y+h+extendBBox, x-extendBBox:x+w+extendBBox] #roiImageFiltered = cv2.equalizeHist(roiImage) roiImageFiltered = cv2.resize(roiImage,(100,100)) count +=1 roiImageFiltered,roiImageFilteredframe = DataUtil.prepareDataLive(roiImageFiltered, DataUtil.DATA_MODALITY["Image"], networkTopology[6][0][0][4]) prediction = MCCNN.classify(network[len(network)-1],[roiImageFiltered],trainingParameters[4])[0] if prediction < backgroundClass and prediction != 1: predictionArray.append(prediction) centroidArray.append(centroid) labels.append(objects[np.int(prediction)]) #heatmap[y:y+h,x:x+w] = prediction #heatmapFromZeros[y:y+h,x:x+w] = prediction #################### Code using SIFT/ORB Features ########################### # Detect the corner key points # kp, roiKeyPointImage = detDes.featureDetectCorner(roiImageFiltered) # # # Use the ORB feature detector and descriptor on the contour # kp, des, roiKeyPointImage = detDes.featureDetectDesSIFT(roiImageFiltered, kp) # if np.size(kp)>0: # histPoints = tH.histogramContour(des,codeBookCenters) # prediction = tC.classify(histPoints, svm) #print prediction ## If the predicted class is not the background class then add the prediction to the prediction array and get its centroid #heatmapFromZeros.convertTo(heatmap, cv2.CV_8UC1) #plt.imshow(heatmapFromZeros) return predictionArray, centroidArray,labels
def processAndClassify(frame,codeBookCenters, svm): objects = ['waterkettle', 'milkcarton', 'trashcan', 'coffeemug', 'kettleBackground','milkcartonBackground','trashcanBackground', 'mugBackground', 'Background']; backgroundClass = 10 predictionArray = [] centroidArray = [] labels = [] # Convert the image into a grayscale image framecopy = frame.copy() grayScaleInput = cv2.cvtColor(framecopy, cv2.COLOR_BGR2GRAY) # Apply meanshift on the RGB image meanShiftResult = prePro.meanShift(np.uint8(framecopy)) #plt.imshow(meanShiftResult) # Convert the result of the Mean shifted image into Grayscale meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding on the resulting greyscale image meanShiftAdapResult = prePro.adapThresh(meanShiftGray) # kernel = np.ones((5,5),np.uint8) # opening = cv2.dilate(meanShiftAdapResult,kernel,iterations=1) # Draw Contours on the Input image with results from the meanshift # Find the contours on the mean shifted image contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult) ## Use Histogram equalabs #boundingBoxContour = opening boundBoxContour = grayScaleInput.copy() #boundBoxContour = cv2.equalizeHist(grayScaleInput.copy()) count = 0 # For each contour for cnt in contours: # If the area covered by the contour is greater than 500 pixels if cv2.contourArea(cnt)>500: # Get the bounding box of the contour [x, y, w, h] = cv2.boundingRect(cnt) # Get the moments of the each contour for computing the centroid of the contour moments = cv2.moments(cnt) if moments['m00']!=0: cx = int(moments['m10']/moments['m00']) # cx = M10/M00 cy = int(moments['m01']/moments['m00']) # cy = M01/M00 centroid = (cx,cy) # cx,cy are the centroid of the contour extendBBox20 = 20 extendBBox10 = 10 left = 0 right = 0 top = 0 bottom = 0 # #Extend it by 10 pixels to avoid missing the key points on the edges if x-extendBBox20 > 0: left = x-extendBBox20 elif x-extendBBox10 > 0: left = x-extendBBox10 else: left = x if y-extendBBox20 > 0: top = y-extendBBox20 elif y-extendBBox10 > 0: top = y-extendBBox10 else: top = y if x+w+extendBBox20 < boundBoxContour.shape[0]: right = x+w+extendBBox20 elif x+w+extendBBox10 < boundBoxContour.shape[0]: right = x+w+extendBBox10 else: right = x+w if y+h+extendBBox20 < boundBoxContour.shape[1]: bottom = y+h+extendBBox20 elif y+h+extendBBox10 < boundBoxContour.shape[1]: bottom = y+h+extendBBox10 else: bottom = y+h roiImage = boundBoxContour[top:bottom,left:right] #roiImage = boundBoxContour[y-extendBBox:y+h+extendBBox, x-extendBBox:x+w+extendBBox] #roiImageFiltered = cv2.equalizeHist(roiImage) roiImageFiltered = roiImage count +=1 # Detect the corner key points kp, roiKeyPointImage = detDes.featureDetectCorner(roiImageFiltered) # Use the ORB feature detector and descriptor on the contour kp, des, roiKeyPointImage = detDes.featureDescriptorORB(roiImageFiltered, kp) if np.size(kp)>0: histPoints = tH.histogramContour(des,codeBookCenters) prediction = tC.classify(histPoints, svm) #print prediction ## If the predicted class is not the background class then add the prediction to the prediction array and get its centroid if prediction < backgroundClass: predictionArray.append(prediction) centroidArray.append(centroid) labels.append(objects[np.int(prediction)]) return predictionArray, centroidArray,labels
#listDir.append("TrainingSetOccMul/") dirCount = 0 for direct in listDir: fileList = glob.glob(rootInputName + listDir[dirCount] + formatName) print ("Current Directory Name:" + rootInputName + listDir[dirCount]) count = 0 for files in fileList: frame=cv2.imread(fileList[count]) base = os.path.basename(files) fileName = os.path.splitext(base)[0] print ("Processing Image " + fileList[count]) time_whole_begin = time.time() grayScaleInput = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Apply meanshift on the RGB image time_meanshift_begin = time.time() meanShiftResult = prePro.meanShift(frame) time_meanshift_end = time.time() # Convert the result of the Mean shifted image into Grayscale meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY) # Apply adaptive thresholding on the resulting greyscale image meanShiftAdapResult = prePro.adapThresh(meanShiftGray) '''######################################################################################################################## Uncomment the following lines to add morphology Comment the following lines if morphology need not be used ############################################## Morphology begins ##########################################################################''' # kernel = np.ones((5,5),np.uint8) # opening = cv2.dilate(meanShiftAdapResult,kernel,iterations=1)