def run(self): """[read the arguments passed to check if is to train model, to run preprocess or run both] """ config_json = self._open_config() my_parser = argparse.ArgumentParser( description='Model to classify if is speech or music') my_parser.add_argument('-m', '--model', required=False, action='store_true') my_parser.add_argument('-d', '--data', required=False, action='store_true') my_parser.add_argument('-y', '--youtube', required=False, action='store_true') args = my_parser.parse_args() if (args.data): preProcess = PreProcess(config_json) preProcess.run() if (args.model): mlpClassifier = MlpClassifier(config_json) mlpClassifier.run() if (args.youtube): preProcessYoutube = PreProcessYoutube(config_json) preProcessYoutube.run()
def run(self, num_kernels=[25, 25], kernel_sizes=[(11, 11), (5, 5)], batch_size=256, epochs=100000, optimizer='RMSprop'): optimizerData = {} optimizerData['learning_rate'] = 0.0005 / 2 optimizerData['rho'] = 0.9 optimizerData['epsilon'] = 1e-2 optimizerData['momentum'] = 0.9 print '... Loading data' # load in and process data if data_size == 'large': preProcess = PreProcess() data = preProcess.run() elif data_size == 'medium': preProcess = Medium() data = preProcess.run() elif data_size == 'small': preProcess = Small() data = preProcess.run() else: print 'data_size must be small, medium or large.' exit() train_set_x, train_set_y = data[0], data[3] valid_set_x, valid_set_y = data[1], data[4] test_set_x, test_set_y = data[2], data[5] train_set_x = theano.tensor._shared(train_set_x, borrow=True) valid_set_x = theano.tensor._shared(valid_set_x, borrow=True) train_set_y = theano.tensor._shared(train_set_y, borrow=True) valid_set_y = theano.tensor._shared(valid_set_y, borrow=True) test_set_x = theano.tensor._shared(test_set_x, borrow=True) test_set_y = theano.tensor._shared(test_set_y, borrow=True) print '... Initializing network' # training parameters self.n_sports = 500 # print error if batch size is to large if valid_set_y.get_value(borrow=True).size < batch_size: print 'Error: Batch size is larger than size of validation set.' # compute batch sizes for train/test/validation n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size # symbolic variables x = T.matrix('x') # input image data y = T.ivector('y') # input label data self.model(batch_size, num_kernels, kernel_sizes, x, y) # Initialize parameters and functions cost = self.layer3.negative_log_likelihood(y) # Cost function params = self.params # List of parameters grads = T.grad(cost, params) # Gradient index = T.lscalar() # Index # Intialize optimizer updates = self.init_optimizer(optimizer, cost, params, optimizerData) # Train function train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size:(index + 1) * batch_size], y: train_set_y[index * batch_size:(index + 1) * batch_size] }) # Validation function validate_model = theano.function( [index], self.layer3.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] }) # Test function test_model = theano.function( [index], self.layer3.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] }) def solve(): costs = [] for i in xrange(n_train_batches): costs.append(train_model(i)) return costs def shuffle(train_set_x, train_set_y): #print train_set_x.get_value(borrow=True).shape[0] rand = np.random.permutation( range(train_set_x.get_value(borrow=True).shape[0])) train_set_x.set_value(train_set_x.get_value(borrow=True)[rand], borrow=True) train_set_y.set_value(train_set_y.get_value(borrow=True)[rand], borrow=True) return train_set_x, train_set_y, train_model # Solver try: print '... Solving' start_time = time.time() for epoch in range(epochs): t1 = time.time() train_set_x, train_set_y, train_model = shuffle( train_set_x, train_set_y) costs = solve() validation_losses = [ validate_model(i) for i in xrange(n_valid_batches) ] t2 = time.time() print "Epoch {} NLL {:.2} %err in validation set {:.1%} Time (epoch/total) {:.2}/{:.2} mins".format( epoch + 1, np.mean(costs), np.mean(validation_losses), (t2 - t1) / 60., (t2 - start_time) / 60.) # f = open('workfile' , 'r+') # f.write("Epoch {} NLL {:.2} %err in validation set {:.1%} Time (epoch/total) {:.2}/{:.2} mins".format(epoch + 1, np.mean(costs), np.mean(validation_losses),(t2-t1)/60.,(t2-start_time)/60.)) # f.close() with open("workfile_batch_c", "a") as myfile: myfile.write( "Epoch {} NLL {:.2} %err in validation set {:.1%} Time (epoch/total) {:.2}/{:.2} mins \n" .format(epoch + 1, np.mean(costs), np.mean(validation_losses), (t2 - t1) / 60., (t2 - start_time) / 60.)) if epoch % 10 == 0: test_errors = [ test_model(i) for i in range(n_test_batches) ] print "test errors: {:.1%}".format(np.mean(test_errors)) with open("workfile_batch_c2", "a") as myfile: myfile.write("test errors: {:.1%}\n".format( np.mean(test_errors))) except KeyboardInterrupt: print '... Exiting solver' # Evaluate performance predict = theano.function( inputs=[index], outputs=self.layer3.prediction(), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size] }) test_errors = [test_model(i) for i in range(n_test_batches)] print "test errors: {:.1%}".format(np.mean(test_errors)) pred = [predict(i) for i in range(n_test_batches)] print pred[0].shape
def run(self, num_kernels = [125,125], kernel_sizes = [(11, 11), (5, 5)], batch_size = 50, epochs = 100000, optimizer = 'RMSprop'): optimizerData = {} optimizerData['learning_rate'] = 0.0005/2 optimizerData['rho'] = 0.9 optimizerData['epsilon'] = 1e-2 optimizerData['momentum'] = 0.9 print '... Loading data' # load in and process data if data_size == 'large': preProcess = PreProcess() data = preProcess.run() elif data_size == 'medium': preProcess = Medium() data = preProcess.run() elif data_size == 'small': preProcess = Small() data = preProcess.run() else: print 'data_size must be small, medium or large.' exit() train_set_x,train_set_y = data[0],data[3] valid_set_x,valid_set_y = data[1],data[4] test_set_x,test_set_y = data[2],data[5] train_set_x = theano.tensor._shared(train_set_x,borrow=True) valid_set_x = theano.tensor._shared(valid_set_x,borrow=True) train_set_y = theano.tensor._shared(train_set_y,borrow=True) valid_set_y = theano.tensor._shared(valid_set_y,borrow=True) test_set_x = theano.tensor._shared(test_set_x,borrow=True) test_set_y = theano.tensor._shared(test_set_y,borrow=True) print '... Initializing network' # training parameters self.n_sports = 500 # print error if batch size is to large if valid_set_y.get_value(borrow=True).size<batch_size: print 'Error: Batch size is larger than size of validation set.' # compute batch sizes for train/test/validation n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size # symbolic variables x = T.matrix('x') # input image data y = T.ivector('y') # input label data self.model(batch_size, num_kernels, kernel_sizes, x, y) # Initialize parameters and functions cost = self.layer3.negative_log_likelihood(y) # Cost function params = self.params # List of parameters grads = T.grad(cost, params) # Gradient index = T.lscalar() # Index # Intialize optimizer updates = self.init_optimizer(optimizer, cost, params, optimizerData) # Train function train_model = theano.function( [index], cost, updates = updates, givens = { x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # Validation function validate_model = theano.function( [index], self.layer3.errors(y), givens = { x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size] } ) # Test function test_model = theano.function( [index], self.layer3.errors(y), givens = { x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size] } ) predict = theano.function(inputs = [index], outputs = self.layer3.prediction(), givens = { x: test_set_x[index*batch_size: (index+1)*batch_size] } ) def solve(): costs = [] for i in xrange(n_train_batches): costs.append(train_model(i)) return costs def shuffle(train_set_x,train_set_y): #print train_set_x.get_value(borrow=True).shape[0] rand = np.random.permutation(range(train_set_x.get_value(borrow=True).shape[0])) train_set_x.set_value(train_set_x.get_value(borrow=True)[rand],borrow=True) train_set_y.set_value(train_set_y.get_value(borrow=True)[rand],borrow=True) return train_set_x,train_set_y,train_model print np.savetxt('y_vec_LARGE.txt',test_set_y.get_value(borrow=True),delimiter=',') length = test_set_y.get_value(borrow=True).shape[0] print length print 'saved' try: print '... Solving' start_time = time.time() for epoch in range(epochs): t1 = time.time() train_set_x,train_set_y,train_model = shuffle(train_set_x,train_set_y) costs = solve() validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] t2 = time.time() print "Epoch {} NLL {:.2} %err in validation set {:.1%} Time (epoch/total) {:.2}/{:.2} mins".format(epoch + 1, np.mean(costs), np.mean(validation_losses),(t2-t1)/60.,(t2-start_time)/60.) # f = open('workfile' , 'r+') # f.write("Epoch {} NLL {:.2} %err in validation set {:.1%} Time (epoch/total) {:.2}/{:.2} mins".format(epoch + 1, np.mean(costs), np.mean(validation_losses),(t2-t1)/60.,(t2-start_time)/60.)) # f.close() with open("workfile_BIG31", "a") as myfile: myfile.write("Epoch {} NLL {:.2} %err in validation set {:.1%} Time (epoch/total) {:.2}/{:.2} mins \n".format(epoch + 1, np.mean(costs), np.mean(validation_losses),(t2-t1)/60.,(t2-start_time)/60.)) if epoch%1== 0: predictions = np.array([predict(i) for i in range(n_test_batches)]) print predictions[0].shape print predictions.shape predictions = predictions.reshape((length-length%batch_size),500) with file('workfile_BIG33', 'w') as outfile: # I'm writing a header here just for the sake of readability # Any line starting with "#" will be ignored by numpy.loadtxt outfile.write('# Array shape: {0}\n'.format(len(predictions))) # Iterating through a ndimensional array produces slices along # the last axis. This is equivalent to data[i,:,:] in this case for data_slice in predictions: # The formatting string indicates that I'm writing out # the values in left-justified columns 7 characters in width # with 2 decimal places. np.savetxt(outfile, data_slice, fmt='%-7.2f') # Writing out a break to indicate different slices... #outfile.write('\n') test_errors = [test_model(i) for i in range(n_test_batches)] print "test errors: {:.1%}".format(np.mean(test_errors)) with open("workfile_BIG32", "a") as myfile: myfile.write("test errors: {:.1%}\n".format(np.mean(test_errors))) except KeyboardInterrupt: print '... Exiting solver' # Evaluate performance test_errors = [test_model(i) for i in range(n_test_batches)] print "test errors: {:.1%}".format(np.mean(test_errors)) pred = [predict(i) for i in range(n_test_batches)] print pred[0].shape
def run(self, num_kernels=[15, 15], kernel_sizes=[(11, 11), (5, 5)], batch_size=50, epochs=20, optimizer='RMSprop'): optimizerData = {} optimizerData['learning_rate'] = 0.001 optimizerData['rho'] = 0.9 optimizerData['epsilon'] = 1e-4 optimizerData['momentum'] = 0.9 print '... Loading data' # load in and process data preProcess = PreProcess() data = preProcess.run() train_set_x, train_set_y = data[0], data[3] valid_set_x, valid_set_y = data[1], data[4] test_set_x, test_set_y = data[2], data[5] print train_set_x.eval().shape print '... Initializing network' # training parameters self.n_sports = np.max(train_set_y.eval()) + 1 # print error if batch size is to large if valid_set_y.eval().size < batch_size: print 'Error: Batch size is larger than size of validation set.' # compute batch sizes for train/test/validation n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_test_batches /= batch_size n_valid_batches /= batch_size # symbolic variables x = T.matrix('x') # input image data y = T.ivector('y') # input label data self.model(batch_size, num_kernels, kernel_sizes, x, y) # Initialize parameters and functions cost = self.layer3.negative_log_likelihood(y) # Cost function params = self.params # List of parameters grads = T.grad(cost, params) # Gradient index = T.lscalar() # Index # Intialize optimizer updates = self.init_optimizer(optimizer, cost, params, optimizerData) # Training model train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size:(index + 1) * batch_size], y: train_set_y[index * batch_size:(index + 1) * batch_size] }) # Validation function validate_model = theano.function( [index], self.layer3.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] }) # Test function test_model = theano.function( [index], self.layer3.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] }) def solve(): costs = [] for i in xrange(n_train_batches): costs.append(train_model(i)) #if i % 1000 ==0: # print i return costs # Solver try: print '... Solving' start_time = time.time() for epoch in range(epochs): t1 = time.time() costs = solve() validation_losses = [ validate_model(i) for i in xrange(n_valid_batches) ] t2 = time.time() print "Epoch {} NLL {:.2} %err in validation set {:.1%} Time (epoch/total) {:.2}/{:.2} mins".format( epoch + 1, np.mean(costs), np.mean(validation_losses), (t2 - t1) / 60., (t2 - start_time) / 60.) except KeyboardInterrupt: print '... Exiting solver' # Evaluate performance test_errors = [test_model(i) for i in range(n_test_batches)] print "test errors: {:.1%}".format(np.mean(test_errors))