def evaluate(self): logger = logging.getLogger("brc") logger.info("====== evaluating ======") logger.info('Load data_set and vocab...') with open(os.path.join(self.config.get_filepath().vocab_dir, 'vocab.data'), 'rb') as fin: vocab = pickle.load(fin) assert len(self.dev_files) > 0, 'No dev files are provided.' dataloader = Propress(self.config.get_default_params().max_p_num, self.config.get_default_params().max_p_len, self.config.get_default_params().max_q_len, self.config.get_default_params().max_ch_len, dev_files=self.dev_files) logger.info('Converting text into ids...') dataloader.convert_to_ids(vocab) logger.info('Restoring the model...') model = Model(vocab, trainable=False) model.restore(self.config.get_filepath().model_dir, self.algo) logger.info('Evaluating the model on dev set...') dev_batches = dataloader.next_batch('dev', self.config.get_default_params().batch_size, vocab.get_id_byword(vocab.pad_token), vocab.get_id_bychar(vocab.pad_token), shuffle=False) dev_loss, dev_bleu_rouge, summ = model.evaluate( dev_batches, 'dev', result_dir=self.config.get_filepath().output_dir, result_prefix='dev.predicted') logger.info('Loss on dev set: {}'.format(dev_loss)) logger.info('Result on dev set: {}'.format(dev_bleu_rouge)) logger.info('Predicted answers are saved to {}'.format(os.path.join(self.config.get_filepath().output_dir)))
def predict(self): logger = logging.getLogger("brc") logger.info('Load data_set and vocab...') with open(os.path.join(self.config.get_filepath().vocab_dir, 'vocab.data'), 'rb') as fin: vocab = pickle.load(fin) assert len(self.test_files) > 0, 'No test files are provided.' dataloader = Propress(self.config.get_default_params().max_p_num, self.config.get_default_params().max_p_len, self.config.get_default_params().max_q_len, self.config.get_default_params().max_ch_len, test_files=self.test_files) logger.info('Converting text into ids...') dataloader.convert_to_ids(vocab) logger.info('Restoring the model...') model = Model(vocab, trainable=False) model.restore(self.config.get_filepath().model_dir, self.algo) logger.info('Predicting answers for test set...') test_batches = dataloader.next_batch('test', self.config.get_default_params().batch_size, vocab.get_word_id(vocab.pad_token), vocab.get_char_id(vocab.pad_token), shuffle=False) model.evaluate(test_batches, 'test', result_dir=self.config.get_filepath().output_dir, result_prefix='test.predicted')
def evaluate(args): logger = logging.getLogger("brc") logger.info("====== evaluating ======") logger.info('Load data_set and vocab...') with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin: vocab = pickle.load(fin) assert len(args.dev_files) > 0, 'No dev files are provided.' dataloader = Propress(args.max_p_num, args.max_p_len, args.max_q_len, args.max_ch_len, dev_files=args.dev_files) logger.info('Converting text into ids...') dataloader.convert_to_ids(vocab) logger.info('Restoring the model...') model = Model(vocab, args) model.restore(args.model_dir, args.algo) logger.info('Evaluating the model on dev set...') dev_batches = dataloader.next_batch('dev', args.batch_size, vocab.get_word_id(vocab.pad_token), vocab.get_char_id(vocab.pad_token), shuffle=False) dev_loss, dev_bleu_rouge = model.evaluate(dev_batches, result_dir=args.result_dir, result_prefix='dev.predicted') logger.info('Loss on dev set: {}'.format(dev_loss)) logger.info('Result on dev set: {}'.format(dev_bleu_rouge)) logger.info('Predicted answers are saved to {}'.format( os.path.join(args.result_dir)))