Exemple #1
0
def run_batch():
    print("Starting run...")
    df = read_data()
    data = df.to_dict(orient="records")
    results = []
    start = datetime.datetime.now()

    for rows in np.array_split(data, len(data) / batch_size):
        results.extend(predict.infer(list(rows), metadata))
        print("Processed {} rows".format(len(results)))
    end = datetime.datetime.now()

    print("Time take to process {} rows is {}".format(len(data), end - start))
    assert (len(results) == len(data))
    print("Writing results to ", outputs)
    with open(outputs, 'w') as f:
        json.dump(results, f, indent=4)
    print("First result is: ", results[0:1])
Exemple #2
0
def generator():
    path = "./image"
    # 创建一个级联分类器
    face_casecade = cv2.CascadeClassifier(
        'haarcascade_frontalface_default.xml')

    # 打开摄像头
    camera = cv2.VideoCapture(0)
    cv2.namedWindow('人脸识别')
    while (True):
        # 读取一帧图像
        ret, frame = camera.read()
        if ret:
            # 转换为灰度图
            gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            # 人脸检测q
            face = face_casecade.detectMultiScale(gray_img, 1.3, 5)

            for (x, y, w, h) in face:
                # 在原图上绘制矩形
                cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
                # 调整图像大小
                new_frame = cv2.resize(gray_img[y:y + h, x:x + w], (64, 64))

                # 识别l人脸
                cv2.imwrite("test.png", new_frame)
                res = infer("test.png")
                cv2.putText(frame, res, (180, 320), cv2.FONT_HERSHEY_COMPLEX,
                            1, (180, 100, 255), 2, cv2.LINE_AA)

            cv2.imshow('Dynamic', frame)
            # 按下q键退出
            if cv2.waitKey(100) & 0xff == ord('q'):
                break
    camera.release()
    cv2.destroyAllWindows()
Exemple #3
0
 def post(self):
     args = self.reqparse.parse_args()
     data = args['data']
     return predict.infer(list(data.values()), metadata)
 def post(self):
     args = self.reqparse.parse_args()
     data = args['data']
     return predict.infer(list(data.values()), types, tfidf_model,
                          svd_model)
Exemple #5
0
def infer_from_model(model_name, messages):
    _, params = build_model(params_path="./build/param",
                            enc_lstm_units=128)
    model = tf.keras.models.load_model("./build/{}".format(model_name))
    return infer(messages, model, params)