def run_batch(): print("Starting run...") df = read_data() data = df.to_dict(orient="records") results = [] start = datetime.datetime.now() for rows in np.array_split(data, len(data) / batch_size): results.extend(predict.infer(list(rows), metadata)) print("Processed {} rows".format(len(results))) end = datetime.datetime.now() print("Time take to process {} rows is {}".format(len(data), end - start)) assert (len(results) == len(data)) print("Writing results to ", outputs) with open(outputs, 'w') as f: json.dump(results, f, indent=4) print("First result is: ", results[0:1])
def generator(): path = "./image" # 创建一个级联分类器 face_casecade = cv2.CascadeClassifier( 'haarcascade_frontalface_default.xml') # 打开摄像头 camera = cv2.VideoCapture(0) cv2.namedWindow('人脸识别') while (True): # 读取一帧图像 ret, frame = camera.read() if ret: # 转换为灰度图 gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 人脸检测q face = face_casecade.detectMultiScale(gray_img, 1.3, 5) for (x, y, w, h) in face: # 在原图上绘制矩形 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 调整图像大小 new_frame = cv2.resize(gray_img[y:y + h, x:x + w], (64, 64)) # 识别l人脸 cv2.imwrite("test.png", new_frame) res = infer("test.png") cv2.putText(frame, res, (180, 320), cv2.FONT_HERSHEY_COMPLEX, 1, (180, 100, 255), 2, cv2.LINE_AA) cv2.imshow('Dynamic', frame) # 按下q键退出 if cv2.waitKey(100) & 0xff == ord('q'): break camera.release() cv2.destroyAllWindows()
def post(self): args = self.reqparse.parse_args() data = args['data'] return predict.infer(list(data.values()), metadata)
def post(self): args = self.reqparse.parse_args() data = args['data'] return predict.infer(list(data.values()), types, tfidf_model, svd_model)
def infer_from_model(model_name, messages): _, params = build_model(params_path="./build/param", enc_lstm_units=128) model = tf.keras.models.load_model("./build/{}".format(model_name)) return infer(messages, model, params)