def predict():
    if request.method == 'POST':
        try:
            file_object = open("logs/GeneralLogs.txt", 'a+')
            log_writer.log(file_object, 'Start getting data from UI')

            CRIM = float(request.form['CRIM'])
            ZN = float(request.form['ZN'])
            INDUS = float(request.form['INDUS'])
            CHAS = float(request.form['CHAS'])
            NOX = float(request.form['NOX'])
            RM = float(request.form['RM'])
            AGE = float(request.form['AGE'])
            DIS = float(request.form['DIS'])
            RAD = float(request.form['RAD'])
            TAX = float(request.form['TAX'])
            PTRATIO = float(request.form['PTRATIO'])
            B = float(request.form['B'])
            LSTAT = float(request.form['LSTAT'])

            log_writer.log(file_object, 'Complete getting data from UI')
            mydict = {
                'CRIM': CRIM,
                'ZN': ZN,
                'INDUS': INDUS,
                'CHAS': CHAS,
                'NOX': NOX,
                'RM': RM,
                'AGE': AGE,
                'DIS': DIS,
                'RAD': RAD,
                'TAX': TAX,
                'PTRATIO': PTRATIO,
                'B': B,
                'LSTAT': LSTAT
            }

            log_writer.log(file_object,
                           'Passing mydict to prediction.predict_data')
            prediction = predict_data(mydict, log_writer)

            return render_template('results.html', prediction=prediction)
            log_writer.log(
                file_object,
                '=================================================')

        except Exception as e:
            print('The Exception message is: ', e)
            return 'something is wrong'
        # return render_template('results.html')

    else:
        return render_template('index.html')
def predict():
    if request.method == 'POST':
        try:
            file_object = open("logs/GeneralLogs.txt", 'a+')
            log_writer.log(file_object, 'Start getting data from UI')
            fixed_acidity = float(request.form['fixed_acidity'])
            volatile_acidity = float(request.form['volatile_acidity'])
            citric_acid = float(request.form['citric_acid'])
            residual_sugar = float(request.form['residual_sugar'])
            chlorides = float(request.form['chlorides'])
            free_sulfur_dioxide = float(request.form['free_sulfur_dioxide'])
            total_sulfur_dioxide = float(request.form['total_sulfur_dioxide'])
            density = float(request.form['density'])
            pH = float(request.form['pH'])
            sulphates = float(request.form['sulphates'])
            alcohol = float(request.form['alcohol'])

            log_writer.log(file_object, 'Complete getting data from UI')

            mydict = {
                'fixed acidity': fixed_acidity,
                'volatile acidity': volatile_acidity,
                'citric acid': citric_acid,
                'residual sugar': residual_sugar,
                'chlorides': chlorides,
                'free sulfur dioxide': free_sulfur_dioxide,
                'total sulfur dioxide': total_sulfur_dioxide,
                'density': density,
                'pH': pH,
                'sulphates': sulphates,
                'alcohol': alcohol
            }
            log_writer.log(file_object,
                           'Passing mydict to prediction.predict_data')
            prediction = predict_data(mydict, log_writer)

            return render_template('results.html', prediction=prediction)
            log_writer.log(
                file_object,
                '=================================================')
        except Exception as e:
            print('The Exception message is: ', e)
            return 'something is wrong'
            # return render_template('results.html')
    else:
        return render_template('index.html')
def predict():

    if request.method == 'POST':
        try:
            # file_object = open("logs/GeneralLogs.txt", 'a+')
            # log_writer.log(file_object, 'Start getting data from UI')
            age = float(request.form['age'])
            workclass = (request.form['workclass'])
            fnlwgt = float(request.form['fnlwgt'])
            education = (request.form['education'])
            education_num = float(request.form['education_num'])
            marital_status = (request.form['marital_status'])
            occupation = (request.form['occupation'])
            relationship = (request.form['relationship'])
            race = (request.form['race'])
            sex = (request.form['sex'])
            capital_gain = float(request.form['capital_gain'])
            capital_loss = float(request.form['capital_loss'])
            hours_per_week = float(request.form['hours_per_week'])
            native_country = (request.form['native_country'])


            # log_writer.log(file_object, 'Complete getting data from UI')

            mydict = {'age':age,	'workclass':workclass,	'fnlwgt':fnlwgt,	'education':education,	'education_num':education_num,
              'marital_status':marital_status,	'occupation':occupation,	'relationship':relationship,	'race':race,
              'sex':sex, 'capital_gain':capital_gain,	'capital_loss':capital_loss,	'hours_per_week':hours_per_week,
              'native_country':native_country}
            # log_writer.log(file_object, 'Passing mydict to prediction.predict_data')
            prediction = predict_data(mydict)
            if prediction == 0:
                result = '<=50K'
            else:
                result = '>50K'
            return render_template('results.html', result=result)
        except Exception as e:
            print('The Exception message is: ', e)
            return 'something is wrong'
            # return render_template('results.html')
    else:
        return render_template('index.html')
Exemple #4
0
        'lat_var_skew',
        'lon_var_skew',
        'velocity_var_skew',
        'velocity_var_covar',
        'angle_var_mean',
        'computed_angle_var_mean',
        'computed_angle_var_skew',
        'computed_angle_var_covar',
        #'angle_var_velocity_cov'
    ],
    axis=1,
    inplace=True)

#构建测试集数据
#test_x,test_id = predict_data(est_kbin)
test_x, test_id = predict_data()
test_x.drop(
    [
        'lat_var_skew',
        'lon_var_skew',
        'velocity_var_skew',
        'velocity_var_covar',
        'angle_var_mean',
        'computed_angle_var_mean',
        'computed_angle_var_skew',
        'computed_angle_var_covar',
        #'angle_var_velocity_cov'
    ],
    axis=1,
    inplace=True)
Exemple #5
0
    def run(self):
        try:
            #Connections
            if (useServer):
                self.connectToServer()
                print("Connected to test server")
                data = Data(self.sock)

            self.connectToArduino()

            #Handshaking with Arduino
            while (self.isHandshakeDone == False):
                self.serial_port.write('H')
                print("H sent")
                time.sleep(0.5)
                reply = self.serial_port.read(1)
                if (reply == 'B'):
                    self.isHandshakeDone = True
                    self.serial_port.write('F')
                    print("Connected to Arduino")
                    self.serial_port.readline()
                    time.sleep(1)
                else:
                    time.sleep(0.5)

            #Receive data from Arduino(periodically) and save to CSV
            send_flag = True
            while (collect_test_data):
                if (send_flag == True):
                    self.serial_port.write('R')
                    send_flag = False
                time.sleep(0.1)
                if (self.serial_port.inWaiting() > 0):
                    arduino_data = readlineCR(self.serial_port)
                    print(arduino_data)
                    cs.save_data(arduino_data)
                    send_flag = True
                    cs.calc_checksum(arduino_data)

            i = 0
            #Read and Predict the results
            while (testing_samples):
                if (send_flag == True):
                    self.serial_port.write('R')
                    send_flag = False
                time.sleep(0.1)
                if (self.serial_port.inWaiting() > 0):
                    send_flag = True
                    arduino_data = readlineCR(self.serial_port)
                    #print(arduino_data)

                    if (cs.calc_checksum(arduino_data)
                        ):  #if checksum is correct
                        last_comma_index = arduino_data.rfind(",")
                        arduino_data = arduino_data[:
                                                    last_comma_index]  #strip out the checksum
                        arduino_data_list = arduino_data.split(
                            "\n")[:-1]  #split into 4 rows of samples
                        for item in arduino_data_list:
                            data.sample_queue.appendleft(item)

                        self.retrieve_data(data, arduino_data)

                    if (len(data.sample_queue) == 20):
                        if (i % 2 == 1):
                            self.result_queue.appendleft(
                                predict.predict_data(data.sample_queue))
                            #print(list(self.result_queue))
                            data.sample_queue.clear()

                    if (len(list(self.result_queue)) == 3
                            and len(set(list(self.result_queue))) == 1):
                        predictedMove = (list(self.result_queue)[0])
                        self.result_queue.clear()
                        if (predictedMove != "Idle"):
                            data.sendData(predictedMove)
                    i += 1
            #test communication with server.


##          while(True):
##              name = raw_input("What is the dance move?")
##              data.voltage = 12
##              data.current = 1
##              data.power = 100
##              data.cumpower
##              data.sendData(name)

        except KeyboardInterrupt:
            sys.exit(1)
Exemple #6
0
def predict(model_id):
    token = DataServer.extract_token(request)

    # check if user sent token
    if token is None:
        return jsonify({"detail": "Authentication credentials were not provided."}), 401

    # send a request to the data server to authenticate the user via the token
    user = DataServer.auth_user(token)
    # none is returned if the token is invalid
    if user is None:
        return jsonify({"detail": "Invalid token."}), 401

    user_id = user['user_id']
    # get data information from the data server
    user_model = DataServer.get_user_model(user_id=user_id, model_id=model_id)
    if user_model is None:
        return jsonify({"detail": "The model specified was not found."}), 404

    # check if the user owns the data to be uploaded
    if user_model['owner'] != user['user_id']:
        return jsonify({"detail": "You do not have permission to perform this action."}), 403

    # check if the file for the model exists
    user_model_dir = os.path.join(MODEL_DIR, f"{user_id}")
    if not os.path.exists(user_model_dir):
        return jsonify({'detail': 'Model was never trained before.'}), 404

    if not check_file(get_model_dir(user_id=user_id, model_id=model_id)):
        return jsonify({'detail': 'Model was never trained before.'}), 404

    if not check_file(get_model_info_dir(user_id=user_id, model_id=model_id)):
        return jsonify({'detail': 'Model was never trained before.'}), 404

    # create directories for the user if it doesn't exist
    user_prediction_dir = os.path.join(PREDICT_DIR, f"{user['user_id']}")
    if not os.path.exists(user_prediction_dir):
        os.makedirs(user_prediction_dir)

    model_info_dir = get_model_info_dir(user_id=user_id, model_id=model_id)
    model_info_file = open(model_info_dir, mode='r')
    model_info_text = model_info_file.read()
    model_info_file.close()
    model_info = json.loads(model_info_text)

    dataset_type = model_info['dataset_info']['type']
    dataset_column_info = model_info['dataset_info']['columns']

    # file is sent in request body, open a temp file and start writing to it
    temp_file_dir = os.path.join(PREDICT_DIR, f"{user['user_id']}", f'temp.{dataset_type}')
    with open(temp_file_dir, "wb") as file:
        file.write(request.data)

    # try to open the file and get some information about it before overwriting the existing file
    try:
        prediction_dataset_column_info = get_columns(temp_file_dir, dataset_type)
    except (UnicodeDecodeError, EmptyDataError):
        os.remove(temp_file_dir)
        return jsonify({'detail': f"Invalid {dataset_type} file."}), 415

    # check columns of the prediction data compared to the training data
    invalid_columns = []
    dataset_column_info_dict = {column['name']: column for column in dataset_column_info}
    for column in prediction_dataset_column_info:
        if column['name'] in dataset_column_info_dict:
            if column['type'] != dataset_column_info_dict[column['name']]['type']:
                invalid_columns.append({
                    'detail': 'Unexpected type',
                    'name': column['name'],
                    'expected_type': dataset_column_info_dict[column['name']]['type']
                })
        else:
            if column['name'] not in model_info['to_drop'] and column['name'] != model_info['y_col']:
                invalid_columns.append({
                    'detail': 'Missing column that was not dropped during training',
                    'name': column['name'],
                })
    if len(invalid_columns) != 0:
        return jsonify({'detail': 'The columns of the prediction file do not match the columns used for training',
                        'invalid_columns': invalid_columns}), 400

    to_drop = [col_name for col_name in model_info['to_drop'] if col_name in dataset_column_info_dict]

    from predict import predict as predict_data
    predict_data(user_id=user_id, model_id=model_id, to_drop=to_drop,
                 predict_data_dir=temp_file_dir, model_info=model_info,)

    # return status code CREATED
    return jsonify({
        'detail': 'Prediction done. You can access the data from the given endpoint.',
        'endpoint': f'/download/p/{model_id}'
    }), 201
Exemple #7
0
from predict import predict_data
from train import train_model


if __name__ == "__main__":

    # mode in which programme runs(training a new model or using an existing one)
    # can be set to 'predict' to predict or to 'train' to train
    mode = 'predict'

    # checking 'train' mode
    if mode == 'train':
        train_model('models/sunday')

    # checking 'predict' mode
    elif mode == 'predict':
        predict_data('models/sunday', 'data/comments_klsh.csv', 'output/klsh_predicted.csv')

    # mode error
    else:
        print("Error: unknown mode")
        exit(1)