def predict_host(host_csv="./hostHW/host_hwrecord.csv",
                 predict_type="both",
                 cpu_weight=0.5,
                 memory_weight=0.5):
    predict(previous_csv=host_csv,
            predict_type=predict_type,
            cpu_weight=cpu_weight,
            memory_weight=memory_weight)
Exemple #2
0
def predict_container(predict_type="both", cpu_weight=0.5, memory_weight=0.5):
    if cpu_weight + memory_weight != 1:
        raise RuntimeError("Weight Error")

    # get all container id
    result_conid = get_id()

    for id in result_conid:
        id = id[:-1]
        container_csv = "./containerHW/" + id + "_hwrecord.csv"
        predict(previous_csv=container_csv,
                predict_type=predict_type,
                cpu_weight=cpu_weight,
                memory_weight=memory_weight)

    return
def predictor():
    p = predict()
    if request.method == 'POST':
        message = request.form['mail']
        data = [message]
        result = p.prediction(data)
        #result = str(result)
        #print(result)
        #print(type(result))
        return render_template('sample.html',
                               tables=[result.to_html(classes='data')],
                               titles=result.columns.values)
        #return result
    return render_template('predict.html')
Exemple #4
0
def predict_attend(request):
    """HTTP Cloud Function.
    Args:
        request (flask.Request): The request object.
        <http://flask.pocoo.org/docs/1.0/api/#flask.Request>
    Returns:
        The response text, or any set of values that can be turned into a
        Response object using `make_response`
        <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>.
    """
    request_json = request.get_json(silent=True)
    result = pm.predict(request_json)
    print('you will be absent at {}!'.format(result))
    return (json.dumps(result), 200, {})
Exemple #5
0
def main():
    # Parse input arguments
    args = parse_inputs()
    

    # We get the image as a FloatTensor
    img = process_image(args.image)
  

    # We now have to load the checkpoint and build the model
    model = loadcheckpoint(args)
    

    # We will performe the calculation in the select device
    device = "cuda:0" if torch.cuda.is_available() and args.gpu else "cpu"
    print(f'These computations are performed in {device}')
    model.to(device)

    # We set the model to evaluation mode (so that we are not using dropout)
    model.eval()
    with torch.no_grad():
        probs,classes = predict(img, model, args.top_k, device)

    # Now, if we indicated a category_name:
    if args.category_names:
        try:
            with open(args.category_names, 'r') as f:
                cat_to_name = json.load(f)
        except FileNotFoundError:
            print("The category names file has not been found.")
            print("Please introduce a valid file.")
            sys.exit("Program terminating.")
        classes = [cat_to_name[item] for item in classes]
 

    # Printing out the results
    print(f'The {args.top_k} most likely classes of flowers are:')
    
    for key, value in zip(classes, probs):
        print(f'Flower: {key};    '
              f'Probability: {value}')
Exemple #6
0
# Label mapping
with open(category_names, 'r') as f:
    cat_to_name = json.load(f)

# Load the checkpoint
filepath = checkpoint + '/checkpoint.pth'
checkpoint = torch.load(filepath, map_location='cpu')
model = checkpoint["model"]
model.load_state_dict(checkpoint['state_dict'])

# Image preprocessing
np_image = process_image(image_path)
# imshow(np_image)

# Predict class and probabilities
print(
    f"Predicting top {top_k} most likely flower names from image {image_path}."
)

probs, classes = predict(np_image, model, top_k, gpu)
classes_name = [cat_to_name[class_i] for class_i in classes]

# print("Flower names: ", classes_name)
# print("Probabilities: ", [round(prob, 3) for prob in probs])

print("\nFlower name (probability): ")
print("---")
for i in range(len(probs)):
    print(f"{classes_name[i]} ({round(probs[i], 3)})")
print("")
Exemple #7
0
image_path = result.image_path
saved_model = result.saved_model
top_k = result.top_k
category_names = result.category_names

if top_k == None:
    top_k = 5

# load model
reloaded_keras_model = tf.keras.models.load_model(
    saved_model, custom_objects={'KerasLayer': hub.KerasLayer})

# predict image
image = np.asarray(Image.open(image_path))
probs, classes = predict(image_path, reloaded_keras_model, top_k)

if category_names != None:
    with open(category_names, 'r') as f:
        class_names = json.load(f)
    names = [str(x + 1) for x in classes]
    classes = [class_names.get(name) for name in names]

# print results
print(
    '\n********************************************************************************************'
)
print('\nthe {} top classes:'.format(top_k))
for i in range(top_k):
    print('\n\u2022 Class: {}'.format(classes[i]),
          '\n\u2022 Probability: {:.3%}'.format(probs[i]))
Exemple #8
0
def predict_tweet(json_tweet):
    text = json_tweet["text"]
    prediction = predict([text])
    return prediction