def CostList(parameters): costList = [] averageErrorList = [] for i in range(0 + predictionData.p, 136 - predictionData.p): X, Y, Y_List = predictionData.DataSet(predictionData.postMile[i]) pred_test, cost = functions.predict(X[:, 4000:4600], Y[:, 4000:4600], parameters) averageError = functions.averageError(pred_test, Y[:, 4000:4600]) costList.append(cost) averageErrorList.append(averageError) outList.append(costList) outList.append(averageErrorList)
parameters) test_x = np.concatenate((test_x[1:6, :], pred_test, test_x[6:, :]), 0) costList.append(cost) averageError = functions.averageError(pred_test, test_y_List[j][:, 4000:4600]) averageErrorList.append(averageError) outList.append(costList) outList.append(averageErrorList) listPostMile = [51.72, 42.18, 31.83, 6.62] listPostMile_1 = [53.57, 43.46, 34.36, 4.48] for i in range(0, 4): inputData, outputData, outputList = predictionData.DataSet(listPostMile[i]) Algorithm(inputData, outputData, outputList, None, True) inputData, outputData, outputList = predictionData.DataSet(40.68) train_x = inputData[:, 0:4000] train_y = outputData[:, 0:4000] test_x = inputData[:, 4000:4600] test_y = outputData[:, 4000:4600] test_y_List = outputList parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations=10000, print_cost=True) for i in range(0, 4):
predictions = function.forward_propagation(X, parameters) rmse_error, average_error = function.compute_error(predictions, Y) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) rmse_error = rmse_error.eval({X: X_train, Y: Y_train}) average_error = average_error.eval({X: X_train, Y: Y_train}) return rmse_error, average_error inputData, outputData, outputList = predictionData.DataSet(40.68) X_train = inputData[:, 0:4000] Y_train = outputData[:, 0:4000] X_test = inputData[:, 4000:4600] Y_test = outputData[:, 4000:4600] Y_test_List = outputList layers_dims = [30, 25, 25, 1] #print(np.shape(inputData)) #print(np.shape(outputData)) #print(np.shape(inputData)) #X_test[:, 0:5] = random.uniform(0, 1)