for probability in probabilities: y_axis_data.append(brier_score(probability)) plt.plot(x_axis_data, y_axis_data) plt.xlabel("Probability assigned to correct answer") plt.ylabel("Brier score") plt.title("Brier score for probabilities 1 % - 99 %") plt.draw() plt.savefig("docs/charts/brier.svg") plt.clf() y_axis_data = [] for probability in probabilities: y_axis_data.append(logarithmic_score(probability)) plt.plot(x_axis_data, y_axis_data) plt.xlabel("Probability assigned to correct answer") plt.ylabel("Logarithmic score") plt.title("Logarithmic score for probabilities 1 % - 99 %") plt.draw() plt.savefig("docs/charts/logarithmic.svg") plt.clf() y_axis_data = [] for probability in probabilities: y_axis_data.append(practical_score(probability))
def test_100_percent(self): assert logarithmic_score(1) == 0
def test_80_percent(self): assert logarithmic_score(0.80) == approximately(0.321)
def test_50_percent(self): assert logarithmic_score(0.50) == 1
def test_20_percent(self): assert logarithmic_score(0.20) == approximately(2.321)
def test_0_percent(self): with pytest.raises(AssertionError): assert logarithmic_score(0.0)