def test_predictor_validation(self, logging_mock): res = main(argv=['testdata/trainer/model.dat']) self.assertEquals(res, PARAMETERS_REQUIRED) logging_mock.warn.assert_called_with("Need to either specify -i or -e") logging_mock.reset_mock() res = main(argv=['testdata/extractorxml/train-import-handler.xml']) self.assertEquals(res, INVALID_TRAINER) self.assertFalse(logging_mock.called)
def test_csv_method(self, logging_mock): res = main(argv=[ 'testdata/trainer/model.dat', '-i', 'testdata/trainer/trainer.data.json', '-m', 'csv' ]) self.assertEquals(res, DONE) os.remove('result.csv')
def test_extraction(self, db_mock, logging_mock): res = main(argv=[ 'testdata/trainer/model.dat', '-e', 'testdata/extractorxml/train-import-handler.xml', '-U', 'start=2012-12-03', '-U', 'end=2012-12-04' ]) self.assertEquals(res, DONE) self.assertFalse(logging_mock.called)
def test_predictor(self): print('\n\n') dimg1 = util.get_full_imgpath('Al_Cardenas', 1) dimg2 = util.get_full_imgpath('Mary_Landrieu', 3) util.set_trained_model_name(ext_cmt='on_ext_features') base_model_fname = util.get_trained_model_name() use_batchnorm = False th = 0.5 output = predictor.main(base_model_fname, dimg1, dimg2, use_batchnorm, th) print(output)
def loaded(): target = os.path.join(APP_ROOT, 'files/') print(target) if not os.path.isdir(target): os.mkdir(target) print(request.files.getlist("file")) for upload in request.files.getlist("file"): print(upload) print("{} is the file name".format(upload.filename)) filename = upload.filename # This is to verify files are supported ext = os.path.splitext(filename)[1] if (ext == ".txt") or (ext == ".pdf"): print("File supported moving on...") else: pass destination = "/".join([target, filename]) print("Accept incoming file:", filename) print("Save it to:", destination) upload.save(destination) label, intro_text, main_text, end_text = predictor.main() if label == 0: language = 'русский' if label == 1: language = 'английский' if label == 2: language = 'украинский' # return send_from_directory("images", filename, as_attachment=True) return render_template('loaded.html', lang=language, intro_text=intro_text, main_text=main_text, end_text=end_text)
import easytrader import predictor import datetime import time import sys import tushare as ts try: predictor.sendMessage("新的交易开始啦:" + str(datetime.datetime.now())) except: pass code = predictor.main() #code = '600875' #amount = 600 print("-----马上开始交易_%s -----" % code) user = easytrader.use('ths') while 1: try: user.connect(r'D:\Program Files\ths\xiadan.exe') break except: pass balance = user.balance print(balance['总资产']) print("waiting at:%s" % datetime.datetime.today()) while datetime.datetime.now().hour != 14 or datetime.datetime.now().minute != 56: time.sleep(30) while 1: try: price = ts.get_today_ticks(code).iloc[0]['price']
def test_roc_method(self, logging_mock): res = main(argv=[ 'testdata/trainer/model.dat', '-i', 'testdata/trainer/trainer.data.json', '-m', 'roc' ]) self.assertEquals(res, DONE)
def test_input_data(self, logging_mock): res = main(argv=[ 'testdata/trainer/model.dat', '-i', 'testdata/trainer/trainer.data.csv' ]) self.assertEquals(res, DONE)
def invocations(): return main(flask.request.get_data(cache=False))