Exemple #1
0
def test_task_failure_caches_constant_inputs_automatically(client):
    @prefect.task(max_retries=2, retry_delay=timedelta(seconds=100))
    def is_p_three(p):
        if p == 3:
            raise ValueError("No thank you.")

    with prefect.Flow("test") as f:
        res = is_p_three(3)

    state = CloudFlowRunner(flow=f).run(return_tasks=[res])
    assert state.is_running()
    assert isinstance(state.result[res], Retrying)
    exp_res = Result(3, result_handler=ConstantResultHandler(3))
    assert not state.result[res].cached_inputs["p"] == exp_res
    exp_res.store_safe_value()
    assert state.result[res].cached_inputs["p"] == exp_res

    last_state = client.set_task_run_state.call_args_list[-1][-1]["state"]
    assert isinstance(last_state, Retrying)
    assert last_state.cached_inputs["p"] == exp_res
    def test_write_returns_value(self):
        handler = ConstantResultHandler("constant value")

        output = handler.write("a different value")
        assert output == "'constant value'"
    def test_handles_none_as_constant(self):

        handler = ConstantResultHandler(None)
        assert handler.read("still not used") is None
        output = handler.write("also not used")
        assert output == "None"
    def test_write_doesnt_overwrite_value(self):
        handler = ConstantResultHandler("untouchable!")

        handler.write("a different value")
        assert handler.value == "untouchable!"
        assert handler.read("still unused") == "untouchable!"
 def test_read_returns_value(self):
     handler = ConstantResultHandler("hello world")
     assert handler.read("this param isn't used") == "hello world"
    def test_instantiates_with_value(self):
        handler = ConstantResultHandler(5)
        assert handler.value == 5

        handler = ConstantResultHandler(value=10)
        assert handler.value == 10
Exemple #7
0
    def get_flow_run_state(
        self,
        state: State,
        task_states: Dict[Task, State],
        task_contexts: Dict[Task, Dict[str, Any]],
        return_tasks: Set[Task],
        task_runner_state_handlers: Iterable[Callable],
        executor: "prefect.engine.executors.base.Executor",
    ) -> State:
        """
        Runs the flow.

        Args:
            - state (State): starting state for the Flow. Defaults to
                `Pending`
            - task_states (dict): dictionary of task states to begin
                computation with, with keys being Tasks and values their corresponding state
            - task_contexts (Dict[Task, Dict[str, Any]]): contexts that will be provided to each task
            - return_tasks ([Task], optional): list of Tasks to include in the
                final returned Flow state. Defaults to `None`
            - task_runner_state_handlers (Iterable[Callable]): A list of state change
                handlers that will be provided to the task_runner, and called whenever a task changes
                state.
            - executor (Executor): executor to use when performing
                computation; defaults to the executor provided in your prefect configuration

        Returns:
            - State: `State` representing the final post-run state of the `Flow`.

        """

        if not state.is_running():
            self.logger.info("Flow is not in a Running state.")
            raise ENDRUN(state)

        if return_tasks is None:
            return_tasks = set()
        if set(return_tasks).difference(self.flow.tasks):
            raise ValueError(
                "Some tasks in return_tasks were not found in the flow.")

        # -- process each task in order

        with executor.start():

            for task in self.flow.sorted_tasks():

                task_state = task_states.get(task)
                if task_state is None and isinstance(
                        task, prefect.tasks.core.constants.Constant):
                    task_states[task] = task_state = Success(result=task.value)

                # if the state is finished, don't run the task, just use the provided state
                if (isinstance(task_state, State) and task_state.is_finished()
                        and not task_state.is_cached()
                        and not task_state.is_mapped()):
                    continue

                upstream_states = {
                }  # type: Dict[Edge, Union[State, Iterable]]

                # -- process each edge to the task
                for edge in self.flow.edges_to(task):
                    upstream_states[edge] = task_states.get(
                        edge.upstream_task,
                        Pending(message="Task state not available."))

                # augment edges with upstream constants
                for key, val in self.flow.constants[task].items():
                    edge = Edge(
                        upstream_task=prefect.tasks.core.constants.Constant(
                            val),
                        downstream_task=task,
                        key=key,
                    )
                    upstream_states[edge] = Success(
                        "Auto-generated constant value",
                        result=Result(
                            val, result_handler=ConstantResultHandler(val)),
                    )

                # -- run the task

                with prefect.context(task_full_name=task.name,
                                     task_tags=task.tags):
                    task_states[task] = executor.submit(
                        self.run_task,
                        task=task,
                        state=task_state,
                        upstream_states=upstream_states,
                        context=dict(prefect.context,
                                     **task_contexts.get(task, {})),
                        task_runner_state_handlers=task_runner_state_handlers,
                        executor=executor,
                    )

            # ---------------------------------------------
            # Collect results
            # ---------------------------------------------

            # terminal tasks determine if the flow is finished
            terminal_tasks = self.flow.terminal_tasks()

            # reference tasks determine flow state
            reference_tasks = self.flow.reference_tasks()

            # wait until all terminal tasks are finished
            final_tasks = terminal_tasks.union(reference_tasks).union(
                return_tasks)
            final_states = executor.wait({
                t:
                task_states.get(t,
                                Pending("Task not evaluated by FlowRunner."))
                for t in final_tasks
            })

            # also wait for any children of Mapped tasks to finish, and add them
            # to the dictionary to determine flow state
            all_final_states = final_states.copy()
            for t, s in list(final_states.items()):
                if s.is_mapped():
                    s.map_states = executor.wait(s.map_states)
                    s.result = [ms.result for ms in s.map_states]
                    all_final_states[t] = s.map_states

            assert isinstance(final_states, dict)

        key_states = set(
            flatten_seq([all_final_states[t] for t in reference_tasks]))
        terminal_states = set(
            flatten_seq([all_final_states[t] for t in terminal_tasks]))
        return_states = {t: final_states[t] for t in return_tasks}

        state = self.determine_final_state(
            state=state,
            key_states=key_states,
            return_states=return_states,
            terminal_states=terminal_states,
        )

        return state
def test_basic_conversion_constant_result():
    result_handler = ConstantResultHandler(value=42)
    result = ResultHandlerResult.from_result_handler(result_handler)
    assert isinstance(result, ConstantResult)
    assert result.value == 42