def run_combiner(): corpus = argmanager.parse_args().corpus corpus_dir = argmanager.corpus_dir(corpus) results_dir = argmanager.results_dir(corpus) combine(corpus_dir) combine(results_dir)
from preprocess import analyzer, argmanager import sys methods_index = list(sys.argv).index('-m') # Checks to see if there are methods if len(sys.argv) == (methods_index) + 1: del sys.argv[methods_index] args = argmanager.parse_args() analyzer.retrieve_q(args.corpus, args.methods, args.train, args.seed)
'.pickle', alz.generate_analyze_filename(corpus, methods, model, train_size, seed)) if not os.path.isfile(results_file): return None with open(results_file, 'rb') as f: result = pickle.load(f) return get_data_from_result(result, attribute) label_dict = { 'traintime': 'Train Time', 'accuracy': 'Accuracy', 'vocabsize': 'Vocabulary Size', 'tokens': 'Corpus Size', } mode_dict = { 'progressive': pull_method_progressive_results, 'comparative': pull_method_comparative_results, } if __name__ == '__main__': args = arg.parse_args() if args.model: create_result_box_plots(args.corpus, args.methods, args.model) plot_results(args.corpus, args.methods, args.model)