def one_vs_one(source, target):
    # Print log
    logging.debug('Converting audio %s to target %s', source, target)
    
    

    # Create output path
    source_file_name = source.split('/')
    source_file_name = source_file_name[len(source_file_name) - 1]
    source_file_name = source_file_name.split(".")[0]

    
    str_path = source_file_name + "_to_t" + target + ".wav"
    #f'{source_file_name}_to_t{target}.wav'

    output_path = os.path.join(conversions_dir, str_path)

    # Get features and variables to perform the conversion
    _, spec = get_spectrograms(source)
    spec_expand = np.expand_dims(spec, axis=0)
    spec_tensor = torch.from_numpy(spec_expand).type(torch.FloatTensor)
    c = Variable(torch.from_numpy(np.array([int(target)]))).cuda()

    # Convert audio to target speaker
    result = solver.test_step(spec_tensor, c, gen=args.use_gen)
    result = result.squeeze(axis=0).transpose((1, 0))

    # Generate and save converted audio
    wav_data = spectrogram2wav(result)
    write(output_path, rate=args.sample_rate, data=wav_data)
Exemple #2
0
    parser.add_argument('-hps',
                        help='The path of hyper-parameter set',
                        default='vctk.json')
    parser.add_argument('-model', '-m', help='The path of model checkpoint')
    parser.add_argument('-source', '-s', help='The path of source .wav file')
    parser.add_argument(
        '-target',
        '-t',
        help=
        'Target speaker id (integer). Same order as the speaker list when preprocessing (en_speaker_used.txt)'
    )
    parser.add_argument('-output', '-o', help='output .wav path')
    parser.add_argument('-sample_rate', '-sr', default=16000, type=int)
    parser.add_argument('--use_gen', default=True, action='store_true')

    args = parser.parse_args()

    hps = Hps()
    hps.load(args.hps)
    hps_tuple = hps.get_tuple()
    solver = Solver(hps_tuple, None)
    solver.load_model(args.model)
    _, spec = get_spectrograms(args.source)
    spec_expand = np.expand_dims(spec, axis=0)
    spec_tensor = torch.from_numpy(spec_expand).type(torch.FloatTensor)
    c = Variable(torch.from_numpy(np.array([int(args.target)]))).cuda()
    result = solver.test_step(spec_tensor, c, gen=args.use_gen)
    result = result.squeeze(axis=0).transpose((1, 0))
    wav_data = spectrogram2wav(result)
    write(args.output, rate=args.sample_rate, data=wav_data)
Exemple #3
0
def sp2wav(sp):
    #exp_sp = np.exp(sp)
    exp_sp = sp
    wav_data = spectrogram2wav(exp_sp)
    return wav_data
def sp2wav(sp): 
	exp_sp = sp
	wav_data = spectrogram2wav(exp_sp)
	return wav_data