def train(): # Model model = Model(ModelConfig.HIDDEN_LAYERS, ModelConfig.HIDDEN_UNITS) # Loss, Optimizer global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') loss_fn = model.loss() optimizer = tf.train.AdamOptimizer(learning_rate=TrainConfig.LR).minimize( loss_fn, global_step=global_step) #optimizer = tf.train.GradientDescentOptimizer(learning_rate=TrainConfig.LR).minimize(loss_fn, global_step=global_step) model.gnsdr_music = tf.placeholder(dtype=tf.float32, shape=(), name='gnsdr_music') model.gsir_music = tf.placeholder(dtype=tf.float32, shape=(), name='gsir_music') model.gsar_music = tf.placeholder(dtype=tf.float32, shape=(), name='gsar_music') model.gnsdr_vocal = tf.placeholder(dtype=tf.float32, shape=(), name='gnsdr_vocal') model.gsir_vocal = tf.placeholder(dtype=tf.float32, shape=(), name='gsir_vocal') model.gsar_vocal = tf.placeholder(dtype=tf.float32, shape=(), name='gsar_vocal') # Summaries summary_ops = summaries(model, loss_fn) with tf.Session(config=TrainConfig.session_conf) as sess: # Initialized, Load state sess.run(tf.global_variables_initializer()) model.load_state(sess, TrainConfig.CKPT_PATH) print('num trainable parameters: %s' % (np.sum([ np.prod(v.get_shape().as_list()) for v in tf.trainable_variables() ]))) writer = tf.summary.FileWriter(TrainConfig.GRAPH_PATH, sess.graph) # Input source data = Data(TrainConfig.DATA_PATH) eval_data = Data(EvalConfig.DATA_PATH) loss = Diff() gnsdr, gsir, gsar = np.array([0, 0]), np.array([0, 0]), np.array([0, 0]) intial_global_step = global_step.eval() for step in range(intial_global_step, TrainConfig.FINAL_STEP): start_time = time.time() bss_metric = step % 20 == 0 or step == intial_global_step bss_eval = '' if bss_metric: gnsdr, gsir, gsar = eval(model, eval_data, sess) bss_eval = 'GNSDR: {} GSIR: {} GSAR: {}'.format( gnsdr, gsir, gsar) mixed_wav, src1_wav, src2_wav, _ = data.next_wavs( TrainConfig.SECONDS, TrainConfig.NUM_WAVFILE) mixed_spec = to_spectrogram(mixed_wav) mixed_mag = get_magnitude(mixed_spec) src1_spec, src2_spec = to_spectrogram(src1_wav), to_spectrogram( src2_wav) src1_mag, src2_mag = get_magnitude(src1_spec), get_magnitude( src2_spec) src1_batch, _ = model.spec_to_batch(src1_mag) src2_batch, _ = model.spec_to_batch(src2_mag) mixed_batch, _ = model.spec_to_batch(mixed_mag) l, _, summary = sess.run( [loss_fn, optimizer, summary_ops], feed_dict={ model.x_mixed: mixed_batch, model.y_src1: src1_batch, model.y_src2: src2_batch, model.gnsdr_music: gnsdr[0], model.gsir_music: gsir[0], model.gsar_music: gsar[0], model.gnsdr_vocal: gnsdr[1], model.gsir_vocal: gsir[1], model.gsar_vocal: gsar[1] }) loss.update(l) writer.add_summary(summary, global_step=step) # Save state if step % TrainConfig.CKPT_STEP == 0: tf.train.Saver().save(sess, TrainConfig.CKPT_PATH + '/checkpoint', global_step=step) elapsed_time = time.time() - start_time print( 'step-{}\ttime={:2.2f}\td_loss={:2.2f}\tloss={:2.3f}\tbss_eval: {}' .format(step, elapsed_time, loss.diff * 100, loss.value, bss_eval)) writer.close()
def eval(n): overall_gnsdr, overall_gsir, overall_gsar = [], [], [] for i in range(n): with tf.Graph().as_default(): # Model model = Model(ModelConfig.HIDDEN_LAYERS, ModelConfig.HIDDEN_UNITS) global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') with tf.Session(config=EvalConfig.session_conf) as sess: # Initialized, Load state sess.run(tf.global_variables_initializer()) model.load_state(sess, EvalConfig.CKPT_PATH) print('num trainable parameters: %s' % (np.sum([ np.prod(v.get_shape().as_list()) for v in tf.trainable_variables() ]))) writer = tf.summary.FileWriter(EvalConfig.GRAPH_PATH, sess.graph) data = Data(EvalConfig.DATA_PATH) mixed_wav, src1_wav, src2_wav, wavfiles = data.next_wavs( EvalConfig.SECONDS, EvalConfig.NUM_EVAL) mixed_spec = to_spectrogram(mixed_wav) mixed_mag = get_magnitude(mixed_spec) mixed_batch, padded_mixed_mag = model.spec_to_batch(mixed_mag) mixed_phase = get_phase(mixed_spec) assert (np.all( np.equal( model.batch_to_spec(mixed_batch, EvalConfig.NUM_EVAL), padded_mixed_mag))) (pred_src1_mag, pred_src2_mag) = sess.run( model(), feed_dict={model.x_mixed: mixed_batch}) seq_len = mixed_phase.shape[-1] pred_src1_mag = model.batch_to_spec( pred_src1_mag, EvalConfig.NUM_EVAL)[:, :, :seq_len] pred_src2_mag = model.batch_to_spec( pred_src2_mag, EvalConfig.NUM_EVAL)[:, :, :seq_len] # Time-frequency masking mask_src1 = soft_time_freq_mask(pred_src1_mag, pred_src2_mag) # mask_src1 = hard_time_freq_mask(pred_src1_mag, pred_src2_mag) mask_src2 = 1. - mask_src1 pred_src1_mag = mixed_mag * mask_src1 pred_src2_mag = mixed_mag * mask_src2 # (magnitude, phase) -> spectrogram -> wav if EvalConfig.GRIFFIN_LIM: pred_src1_wav = to_wav_mag_only( pred_src1_mag, init_phase=mixed_phase, num_iters=EvalConfig.GRIFFIN_LIM_ITER) pred_src2_wav = to_wav_mag_only( pred_src2_mag, init_phase=mixed_phase, num_iters=EvalConfig.GRIFFIN_LIM_ITER) else: pred_src1_wav = to_wav(pred_src1_mag, mixed_phase) pred_src2_wav = to_wav(pred_src2_mag, mixed_phase) # Write the result tf.summary.audio('GT_mixed', mixed_wav, ModelConfig.SR, max_outputs=EvalConfig.NUM_EVAL) tf.summary.audio('Pred_music', pred_src1_wav, ModelConfig.SR, max_outputs=EvalConfig.NUM_EVAL) tf.summary.audio('Pred_vocal', pred_src2_wav, ModelConfig.SR, max_outputs=EvalConfig.NUM_EVAL) if EvalConfig.EVAL_METRIC: # Compute BSS metrics gnsdr, gsir, gsar = bss_eval_global( mixed_wav, src1_wav, src2_wav, pred_src1_wav, pred_src2_wav) # Write the score of BSS metrics tf.summary.scalar('GNSDR_music', gnsdr[0]) tf.summary.scalar('GSIR_music', gsir[0]) tf.summary.scalar('GSAR_music', gsar[0]) tf.summary.scalar('GNSDR_vocal', gnsdr[1]) tf.summary.scalar('GSIR_vocal', gsir[1]) tf.summary.scalar('GSAR_vocal', gsar[1]) print('GNSDR: ', gnsdr) print('GSIR: ', gsir) print('GSAR: ', gsar) overall_gnsdr.append(gnsdr) overall_gsir.append(gsir) overall_gsar.append(gsar) if EvalConfig.WRITE_RESULT: # Write the result for i in range(len(wavfiles)): name = wavfiles[i].replace('/', '-').replace('.wav', '') write_wav( mixed_wav[i], '{}/{}-{}'.format(EvalConfig.RESULT_PATH, name, 'original')) write_wav( pred_src1_wav[i], '{}/{}-{}'.format(EvalConfig.RESULT_PATH, name, 'music')) write_wav( pred_src2_wav[i], '{}/{}-{}'.format(EvalConfig.RESULT_PATH, name, 'voice')) writer.add_summary(sess.run(tf.summary.merge_all()), global_step=global_step.eval()) writer.close() if n > 1: overall_gnsdr = np.array(overall_gnsdr) overall_gsir = np.array(overall_gsir) overall_gsar = np.array(overall_gsar) overall_gnsdr = np.mean(overall_gnsdr, axis=0) overall_gsir = np.mean(overall_gsir, axis=0) overall_gsar = np.mean(overall_gsar, axis=0) print('OVERALL GNSDR: ', overall_gnsdr) print('OVERALL GSIR: ', overall_gsir) print('OVERALL GSAR: ', overall_gsar)
def train(): # Model model = Model() # Loss, Optimizer global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') loss_fn = model.loss() optimizer = tf.train.AdamOptimizer(learning_rate=TrainConfig.LR).minimize( loss_fn, global_step=global_step) # Summaries summary_op = summaries(model, loss_fn) with tf.Session(config=TrainConfig.session_conf) as sess: # Initialized, Load state sess.run(tf.global_variables_initializer()) model.load_state(sess, TrainConfig.CKPT_PATH) writer = tf.summary.FileWriter(TrainConfig.GRAPH_PATH, sess.graph) # Input source data = Data(TrainConfig.DATA_PATH) loss = Diff() for step in range(global_step.eval(), TrainConfig.FINAL_STEP): mixed_wav, src1_wav, src2_wav, _ = data.next_wavs( TrainConfig.SECONDS, TrainConfig.NUM_WAVFILE) mixed_spec = to_spectrogram(mixed_wav) mixed_mag = get_magnitude(mixed_spec) src1_spec, src2_spec = to_spectrogram(src1_wav), to_spectrogram( src2_wav) src1_mag, src2_mag = get_magnitude(src1_spec), get_magnitude( src2_spec) src1_batch, _ = model.spec_to_batch(src1_mag) src2_batch, _ = model.spec_to_batch(src2_mag) mixed_batch, _ = model.spec_to_batch(mixed_mag) l, _, summary = sess.run( [loss_fn, optimizer, summary_op], feed_dict={ model.x_mixed: mixed_batch, model.y_src1: src1_batch, model.y_src2: src2_batch }) loss.update(l) print('step-{}\td_loss={:2.2f}\tloss={}'.format( step, loss.diff * 100, loss.value)) writer.add_summary(summary, global_step=step) # Save state if step % TrainConfig.CKPT_STEP == 0: tf.train.Saver().save(sess, TrainConfig.CKPT_PATH + '/checkpoint', global_step=step) writer.close()
from data import Data from librosa import amplitude_to_db, stft from librosa.display import specshow from preprocess import to_spectrogram, get_magnitude from pylab import savefig import matplotlib.pyplot as plt import numpy as np data = Data(TrainConfig.DATA_PATH) mixed_wav, src1_wav, src2_wav, _ = data.next_wavs(TrainConfig.SECONDS, TrainConfig.NUM_WAVFILE) mixed_spec = to_spectrogram(mixed_wav) mixed_mag = get_magnitude(mixed_spec) src1_spec, src2_spec = to_spectrogram(src1_wav), to_spectrogram(src2_wav) src1_mag, src2_mag = get_magnitude(src1_spec), get_magnitude(src2_spec) sr = ModelConfig.SR y = src1_wav[0] def plot_wav_as_spec(wav, sr=ModelConfig.SR, s=0.5, path='foo.png'): """Plots a spectrogram Will save as foo.png in script directory Arguments: wav {array} -- audio data
def eval(model, data, sr, len_frame, num_wav, glim, glim_iter, ckpt_path, graph_path, result_path): len_hop = closest_power_of_two(len_frame / 4) global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') with tf.Session() as sess: if not os.path.exists(result_path): os.makedirs(result_path) # Initialized, Load state sess.run(tf.global_variables_initializer()) model.load_state(sess, ckpt_path) writer = tf.summary.FileWriter("{}/{}".format(graph_path, "eval"), sess.graph) mixed_wav, src1_wav, src2_wav, med_names = data.next_wavs(num_wav) mixed_spec = to_spectrogram(mixed_wav, len_frame, len_hop) mixed_mag = get_magnitude(mixed_spec) mixed_batch, padded_mixed_mag = model.spec_to_batch(mixed_mag) mixed_phase = get_phase(mixed_spec) assert (np.all(np.equal(model.batch_to_spec(mixed_batch, num_wav), padded_mixed_mag))) (pred_src1_mag, pred_src2_mag) = sess.run(model(), feed_dict={model.x_mixed: mixed_batch}) seq_len = mixed_phase.shape[-1] pred_src1_mag = model.batch_to_spec(pred_src1_mag, num_wav)[:, :, :seq_len] pred_src2_mag = model.batch_to_spec(pred_src2_mag, num_wav)[:, :, :seq_len] # Time-frequency masking mask_src1 = soft_time_freq_mask(pred_src1_mag, pred_src2_mag) # mask_src1 = hard_time_freq_mask(pred_src1_mag, pred_src2_mag) mask_src2 = 1. - mask_src1 pred_src1_mag = mixed_mag * mask_src1 pred_src2_mag = mixed_mag * mask_src2 # (magnitude, phase) -> spectrogram -> wav if glim: pred_src1_wav = to_wav_mag_only(pred_src1_mag, mixed_phase, len_frame, len_hop, num_iters=glim_iter) pred_src2_wav = to_wav_mag_only(pred_src2_mag, mixed_phase, len_frame, len_hop, num_iters=glim_iter) else: pred_src1_wav = to_wav(pred_src1_mag, mixed_phase, len_hop) pred_src2_wav = to_wav(pred_src2_mag, mixed_phase, len_hop) # Write the result tf.summary.audio('GT_mixed', mixed_wav, sr, max_outputs=num_wav) tf.summary.audio('Pred_music', pred_src1_wav, sr, max_outputs=num_wav) tf.summary.audio('Pred_vocal', pred_src2_wav, sr, max_outputs=num_wav) # Compute BSS metrics gnsdr, gsir, gsar = bss_eval_global(mixed_wav, src1_wav, src2_wav, pred_src1_wav, pred_src2_wav, num_wav) # Write the score of BSS metrics tf.summary.scalar('GNSDR_music', gnsdr[0]) tf.summary.scalar('GSIR_music', gsir[0]) tf.summary.scalar('GSAR_music', gsar[0]) tf.summary.scalar('GNSDR_vocal', gnsdr[1]) tf.summary.scalar('GSIR_vocal', gsir[1]) tf.summary.scalar('GSAR_vocal', gsar[1]) # Write the result for i in range(len(med_names)): write_wav(mixed_wav[i], '{}/{}-{}'.format(result_path, med_names[i], 'all_stems_mixed'), sr) write_wav(pred_src1_wav[i], '{}/{}-{}'.format(result_path, med_names[i], 'target_instrument'), sr) write_wav(pred_src2_wav[i], '{}/{}-{}'.format(result_path, med_names[i], 'other_stems_mixed'), sr) writer.add_summary(sess.run(tf.summary.merge_all()), global_step=global_step.eval()) writer.close()
def train(): dsd_train, dsd_test = GetData.getDSDFilelist("DSD100.xml") dataset = dict() dataset[ "train_sup"] = dsd_train # 50 training tracks from DSD100 as supervised dataset dataset["valid"] = dsd_test[:25] dataset["test"] = dsd_test[25:] with open('dataset.pkl', 'wb') as file: pickle.dump(dataset, file) print("Created dataset structure") # Model model = Model() # Loss, Optimizer #global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') loss_fn = model.loss() lr = ((CONFIG_MAP['flat-R-VAE'].hparams.learning_rate - CONFIG_MAP['flat-R-VAE'].hparams.min_learning_rate) * tf.pow(CONFIG_MAP['flat-R-VAE'].hparams.decay_rate, tf.to_float(global_step)) + CONFIG_MAP['flat-R-VAE'].hparams.min_learning_rate) optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize( loss_fn, global_step=model.global_step) # Summaries summary_op = summaries(model, loss_fn) with tf.Session(config=TrainConfig.session_conf) as sess: # Initialized, Load state sess.run(tf.global_variables_initializer()) #model.load_state(sess, TrainConfig.CKPT_PATH) writer = tf.summary.FileWriter(TrainConfig.GRAPH_PATH, sess.graph) # Input source btch_size = CONFIG_MAP['flat-R-VAE'].hparams.batch_size loss = Diff() i = 0 for step in range( model.global_step.eval(), TrainConfig.FINAL_STEP): # changed xrange to range for py3 if (i > 50): i = 0 batch_ = dsd_train[i:i + btch_size] i = i + btch_size mixed_wav, drums_wav = get_random_wav(batch_, TrainConfig.SECONDS, ModelConfig.SR) mixed_spec = to_spectrogram(mixed_wav) mixed_mag = get_magnitude(mixed_spec) drums_spec = to_spectrogram(drums_wav) drums_mag = get_magnitude(drums_spec) mixed_batch, _ = model.spec_to_batch(mixed_mag) drums_batch, _ = model.spec_to_batch(drums_mag) l, _, summary = sess.run( [loss_fn, optimizer, summary_op], feed_dict={ model.x_mixed: mixed_batch, model.x_drums: drums_batch, model.y_drums: drums_batch }) loss.update(l) print('step-{}\td_loss={:2.2f}\tloss={}'.format( step, loss.diff * 100, loss.value)) writer.add_summary(summary, global_step=step) # Save state if step % TrainConfig.CKPT_STEP == 0: tf.train.Saver().save(sess, TrainConfig.CKPT_PATH + '/checkpoint', global_step=step) writer.close()
def separate(filename, channel): with tf.Graph().as_default(): # Model model = Model(ModelConfig.HIDDEN_LAYERS, ModelConfig.HIDDEN_UNITS) global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') total_samples, origin_samples, samples = decode_input(filename) channels = origin_samples.shape[0] with tf.Session(config=EvalConfig.session_conf) as sess: # Initialized, Load state sess.run(tf.global_variables_initializer()) model.load_state(sess, EvalConfig.CKPT_PATH) mixed_wav, src1_wav, src2_wav = samples, samples, samples mixed_spec = to_spectrogram(mixed_wav) mixed_mag = get_magnitude(mixed_spec) mixed_batch, padded_mixed_mag = model.spec_to_batch(mixed_mag) mixed_phase = get_phase(mixed_spec) (pred_src1_mag, pred_src2_mag) = sess.run(model(), feed_dict={model.x_mixed: mixed_batch}) seq_len = mixed_phase.shape[-1] pred_src1_mag = model.batch_to_spec(pred_src1_mag, 1)[:, :, :seq_len] pred_src2_mag = model.batch_to_spec(pred_src2_mag, 1)[:, :, :seq_len] # Time-frequency masking mask_src1 = soft_time_freq_mask(pred_src1_mag, pred_src2_mag) # mask_src1 = hard_time_freq_mask(pred_src1_mag, pred_src2_mag) mask_src2 = 1. - mask_src1 pred_src1_mag = mixed_mag * mask_src1 pred_src2_mag = mixed_mag * mask_src2 # (magnitude, phase) -> spectrogram -> wav if EvalConfig.GRIFFIN_LIM: pred_src1_wav = to_wav_mag_only( pred_src1_mag, init_phase=mixed_phase, num_iters=EvalConfig.GRIFFIN_LIM_ITER) pred_src2_wav = to_wav_mag_only( pred_src2_mag, init_phase=mixed_phase, num_iters=EvalConfig.GRIFFIN_LIM_ITER) else: pred_src1_wav = to_wav(pred_src1_mag, mixed_phase) pred_src2_wav = to_wav(pred_src2_mag, mixed_phase) def stack(data): size = data.shape[0] // channels elements = [] for i in range(channels): elements.append(data[size * i:size * (i + 1)]) return np.dstack(elements)[0] music_data = pred_src1_wav voice_data = pred_src2_wav if channel >= 0: def filter_samples(data): for i in range(origin_samples.shape[0]): if i != channel: data[i, :] = origin_samples[i, 0:data.shape[1]] return data music_data = filter_samples(music_data) voice_data = filter_samples(voice_data) music_wav = np.dstack(music_data)[0] voice_wav = np.dstack(voice_data)[0] return music_wav, voice_wav return None