def main(): with open(args.model, 'rb') as f: model = torch.load(f) if args.cuda: model.cuda() with open(args.word_path, 'rb') as f: word2id = pickle.load(f) raw_data = seg_data(args.data) transformed_data = transform_data_to_id(raw_data, word2id) data = [x + [y[2]] for x, y in zip(transformed_data, raw_data)] data = sorted(data, key=lambda x: len(x[1])) print('test data size {:d}'.format(len(data))) inference(model, data)
help='batch size') parser.add_argument('--cuda', action='store_true',default=True, help='use CUDA') args = parser.parse_args() with open(args.model, 'rb') as f: model = torch.load(f) if args.cuda: model.cuda() with open(args.word_path, 'rb') as f: word2id = cPickle.load(f) raw_data = seg_data(args.data) transformed_data = transform_data_to_id(raw_data, word2id) data = [x + [y[2]] for x, y in zip(transformed_data, raw_data)] data = sorted(data, key=lambda x: len(x[1])) print( 'test data size {:d}'.format(len(data))) def inference(): model.eval() predictions = [] with torch.no_grad(): for i in range(0, len(data), args.batch_size): # for i in range(0, len(data), 3): try: one = data[i:i + args.batch_size] # print(one) query, _ = padding([x[0] for x in one], max_len=50)
help='use CUDA') args = parser.parse_args() with open(args.model, 'rb') as f: model = torch.load(f) if args.cuda: model.cuda() print(model) with open(args.word_path, 'rb') as f: word2id = pickle.load(f) print(len(word2id)) raw_data = seg_data(args.data) transformed_data = transform_data_to_id(raw_data, word2id) data = [x + [y[2]] for x, y in zip(transformed_data, raw_data)] data = sorted(data, key=lambda x: len(x[1])) print('test data size {:d}'.format(len(data))) raw_data_valid = seg_data(args.valid_data) transformed_data_valid = transform_data_to_id(raw_data_valid, word2id) dev_data = [x + [y[2]] for x, y in zip(transformed_data_valid, raw_data_valid)] dev_data = sorted(dev_data, key=lambda x: len(x[1])) print('valid data size {:d}'.format(len(dev_data))) def inference(): model.eval() predictions = [] with torch.no_grad():