tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") tf.flags.DEFINE_boolean("verbose_for_debugging", True, "Allow info to be printed to understand the behaviour of the network") tf.flags.DEFINE_boolean("verbose_for_experiments", True, "Print only the perplexity") FLAGS = tf.flags.FLAGS # Prepare data # Load data print("Load vocabulary list \n") vocab, generated_embeddings = preprocess_helper.load_frequent_words_and_embeddings(FLAGS.vocab_with_emb_path) print("Loading and preprocessing test dataset \n") x_test, y_test = preprocess_helper.load_and_process_data(FLAGS.data_file_path, vocab, FLAGS.sentence_length, pad_sentence=False) ## EVALUATION ## checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file)
"inter_op_parallelism_threads available in each process.") tf.flags.DEFINE_integer( "intra_op_parallelism_threads", 0, "The execution of an individual op (for some op types) can be parallelized" " on a pool of intra_op_parallelism_threads.") FLAGS = tf.flags.FLAGS # Prepare the data print("Load vocabulary list \n") vocab, generated_embeddings = preprocess_helper.load_frequent_words_and_embeddings( FLAGS.vocab_with_emb_path) print("Loading and preprocessing training and validation datasets \n") data, labels = preprocess_helper.load_and_process_data(FLAGS.data_file_path, vocab, FLAGS.sentence_length) # Randomly shuffle data np.random.seed(10) shuffled_indices = np.random.permutation(len(labels)) data = data[shuffled_indices] labels = labels[shuffled_indices] # Split train/dev sets val_sample_index = -1 * int(FLAGS.val_sample_percentage * float(len(labels))) x_train, x_val = data[:val_sample_index], data[val_sample_index:] y_train, y_val = labels[:val_sample_index], labels[val_sample_index:] # Summary of the loaded data print('Loaded: ', len(x_train), ' samples for training')