def main_train(self, train_data, steps_per_epoch=None):
        if steps_per_epoch is None:
            steps_per_epoch = self.steps_per_epoch

        from main_general import get_training_data

        from preprocessing.image import get_flow

        # TODO train
        x_train, y_train, x_val, y_val = get_training_data(train_data)

        # Generator
        flow_tr = get_flow(x_train,
                           y_train,
                           w_patch=self.w_patch,
                           w_ext_in=self.w_ext_in)

        flow_va = get_flow(x_val,
                           y_val,
                           w_patch=self.w_patch,
                           w_ext_in=self.w_ext_in)

        epochs = 1

        self.neural_net.train(
            flow_tr,
            validation=flow_va,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
            info=f'{set_net["name"]}_d{self.d}_k{self.k}_n{self.n_per_class}')
    def set_img_x(self):
        if self.set_nr == 13:
            train_data = get_13(self.mod)

            from data.datatools import imread
            from data.conversion_tools import annotations2y
            train_data.y_te = np.copy(train_data.y_tr)
            train_data.y_tr = annotations2y(imread(
                '/home/lameeus/data/ghent_altar/input/hierarchy/13_small/clean_annot_practical.png'
            ),
                                            thresh=.9)

            img_x, img_y, _, img_y_te = get_training_data(train_data)

        # Normalise the input!
        img_x = rescale0to1(img_x)
        self.img_x = img_x
        self.img_y_tr = img_y
        self.img_y_te = img_y_te

        train_data_10 = get_10lamb_6patches(self.mod).get_train_data_all()
        img_x_10, img_y_10, _, _ = get_training_data(train_data_10)
        # Normalise the input!
        img_x_10 = rescale0to1(img_x_10)

        self.flow_tr_set = get_flow(self.img_x,
                                    self.img_y_tr,
                                    w_patch=self.w_patch,
                                    w_ext_in=self.w_ext_in_ti)
        self.flow_tr_10 = get_flow(img_x_10,
                                   img_y_10,
                                   w_patch=self.w_patch,
                                   w_ext_in=self.w_ext_in_ti)
        n_multiply = 10
        self.flow_tr_set_10 = get_flow([self.img_x] * n_multiply + [img_x_10],
                                       [self.img_y_tr] * n_multiply +
                                       [img_y_10],
                                       w_patch=self.w_patch,
                                       w_ext_in=self.w_ext_in_ti)

        self.flow_ae_tr = get_flow(
            self.img_x,
            self.img_x,
            w_patch=self.w_patch,
            w_ext_in=self.w_ext_in_ae,
        )
    def set_flow(train_data):

        x_train, y_train, _, _ = get_training_data(train_data)

        global flow_tr
        flow_tr = get_flow(x_train,
                           y_train,
                           w_patch=w_patch,
                           w_ext_in=w_ext_in)
Exemple #4
0
 def get_flow_xy(xy):
     if isinstance(xy, tuple):
         x, y = map(batch2img, xy)
         
         flow = get_flow(batch2img(x), batch2img(y))
         return flow
     
     elif isinstance(xy, (NumpyArrayIterator, )):
         return xy
         
     else:
         raise TypeError(f'Unkown type for xy: {type(xy)}')
    def set_flow(self):
        # w_out should be 2+4*n

        w_checker = 512

        if self.ae_set_nr is not None:

            img_x = []
            for set_nr in self.ae_set_nr:

                if set_nr == 10:
                    df = get_10lamb()
                elif set_nr == 13:
                    df = get_13zach()
                elif set_nr == 19:
                    df = get_19hand()

                img_x_i = xy_from_df(df, mod)[0]

                img_x.append()

        else:
            raise NotImplementedError()

            img_x_lst = [self.img_x]

        h_x, w_x = img_x.shape[:2]

        x_ae_tr = []
        x_ae_te = []
        for i in range(int(np.ceil(h_x / w_checker))):
            for j in range(int(np.ceil(w_x / w_checker))):

                h0 = i * w_checker
                w0 = j * w_checker
                crop_x = img_x[h0:h0 + w_checker, w0:w0 + w_checker, ...]

                if (i + j) % 2 == 0:
                    x_ae_tr.append(crop_x)
                else:
                    x_ae_te.append(crop_x)

        self.flow_ae_tr = get_flow(
            x_ae_tr,
            x_ae_tr,
            w_patch=self.w_patch,
            w_ext_in=self.w_ext_in_ae,
        )
        self.flow_ae_te = get_flow(
            x_ae_te,
            x_ae_te,
            w_patch=self.w_patch,
            w_ext_in=self.w_ext_in_ae,
        )
        """
        Data for Segmentation of 10 lamb
        """
        self.k_fold_train_data = get_10lamb_6patches(5)

        self.flow_segm = get_flow(
            self.img_x,
            self.k_fold_train_data.get_train_data_all().get_y_train(),
            w_patch=self.w_patch,
            w_ext_in=self.w_ext_in_ti if self.ti else self.w_ext_in_ae,
        )
def main():
    """

    :return:
    """

    ### Settings
    mod = 5

    w_patch = 16 * 2
    """
    Data (all important modalities)
    """

    # folder_windows = r'C:\Users\Laurens_laptop_w\OneDrive - UGent\data\10lamb'
    train_data = get_10lamb_old(mod)
    img_x, img_y_tr, _, _ = get_training_data(train_data)
    # Normalise the input!
    img_x = rescale0to1(img_x)
    """
    Train segmentation
        1) reuse everything
        2) fix encoder
    """

    if 1:

        if 1:
            b_encoder_fixed = False

            info_enc_fixed = '_enc_fixed' if b_encoder_fixed else ''
            get_info = lambda: f'10lamb_kfold_pretrained{info_enc_fixed}/unet_enc_k{k}_ifold{i_fold}'

            n_epochs = 40

            k = 10

            if k == 10:
                epoch_w = 100
            else:
                raise NotImplementedError()

            ### Settings you don't have to change:

            w_patch = 50
            w_ext_in = 28
            b_double = False
            padding = 'valid'

            # TODO flag for converting encoder to dilated conv

            def get_unet_pretrained_encoder():

                model_encoder = get_model_encoder()

                encoder_inputs = model_encoder.input

                decoder_outputs = decoder(model_encoder, f_out=2)

                model_pretrained_unet = Model(encoder_inputs, decoder_outputs)
                from methods.examples import compile_segm
                compile_segm(model_pretrained_unet, lr=1e-4)

                model_pretrained_unet.summary()

                return model_pretrained_unet

            """
            Train
            """

            k_fold_train_data = get_10lamb_6patches(5)
            for i_fold in range(6):
                """
                Get a new network (not trained yet for segmentation)
                """

                model_pretrained_unet = get_unet_pretrained_encoder()
                n_pretrained_unet = NeuralNet(model_pretrained_unet)
                """
                The data
                """

                train_data_i = k_fold_train_data.k_split_i(i_fold)

                info = get_info()

                img_y_tr = train_data_i.get_y_train()
                img_y_te = train_data_i.get_y_test()

                flow_tr = get_flow(
                    img_x,
                    img_y_tr,
                    w_patch=w_patch,  # Comes from 10
                    w_ext_in=w_ext_in)

                flow_te = get_flow(
                    img_x,
                    img_y_te,
                    w_patch=w_patch,  # Comes from 10
                    w_ext_in=w_ext_in)

                n_pretrained_unet.train(flow_tr,
                                        flow_te,
                                        epochs=n_epochs,
                                        verbose=1,
                                        info=info)
                """
                Prediction
                """

                n_pretrained_unet.w_ext = w_ext_in
                y_pred = n_pretrained_unet.predict(img_x)

                concurrent([y_pred[..., 1]])
    """
    Classification
    """

    if 1:
        im_clean = img_x[..., :3]

        k = 8
        i_fold = 3
        epoch_last = 40

        from methods.examples import kappa_loss, weighted_categorical_crossentropy
        from performance.metrics import accuracy_with0, jaccard_with0
        loss = weighted_categorical_crossentropy((1, 1))

        list_y_pred = []

        ### K fold validation
        k_fold_train_data = get_10lamb_6patches(5)
        train_data_i = k_fold_train_data.k_split_i(i_fold)
        img_y_tr = train_data_i.get_y_train()
        img_y_te = train_data_i.get_y_test()

        for epoch in np.arange(31, epoch_last + 1):
            filepath_model = f'/scratch/lameeus/data/ghent_altar/net_weight/10lamb_kfold/ti_unet_k{k}_kfold{i_fold}/w_{epoch}.h5'

            model = load_model(filepath_model,
                               custom_objects={
                                   'loss': loss,
                                   'accuracy_with0': accuracy_with0,
                                   'jaccard_with0': jaccard_with0,
                                   'kappa_loss': kappa_loss
                               })

            n = NeuralNet(model, w_ext=10)
            y_pred = n.predict(img_x)

            list_y_pred.append(y_pred)

        y_pred_mean = np.mean(list_y_pred, axis=0)
        q1 = y_pred_mean[..., 1]
        concurrent([q1, q1.round(), im_clean])
        """
        Optimal threshold (making conf matrix symmetric, not based on maximising kappa)
        """
        y_gt = np.any([img_y_tr, img_y_te], axis=0)

        from performance.testing import _get_scores, filter_non_zero

        def foo_performance(y_true, y_pred, thresh):
            # is basically argmax
            y_pred_thresh_arg = np.greater_equal(y_pred[..., 1], thresh)

            y_true_flat, y_pred_thresh_arg_flat = filter_non_zero(
                y_true, y_pred_thresh_arg)
            y_te_argmax = np.argmax(y_true_flat, axis=-1)

            # Kappa
            return _get_scores(y_te_argmax, y_pred_thresh_arg_flat)[-1]

        """
        1. BEST? PERFORMANCE based on test set
        """

        print('1. Test distribution optimization')

        thresh = optimal_test_thresh_equal_distribution(img_y_te, y_pred_mean)
        q1_thresh = np.greater_equal(q1, thresh)
        concurrent([q1, q1_thresh, im_clean])

        print(f'thresh: {thresh}')

        # Test, train, both
        print('Kappa performance:')
        print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh))
        print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh))
        print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh))

        print('\nIncremental optimization on test set')

        test_thresh2 = test_thresh_incremental(y_pred_mean,
                                               img_y_tr,
                                               img_y_te,
                                               n=5,
                                               verbose=0)

        print('Kappa performance:')
        print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, test_thresh2))
        print('\ttestset:', foo_performance(img_y_te, y_pred_mean,
                                            test_thresh2))
        print('\tboth:', foo_performance(y_gt, y_pred_mean, test_thresh2))
        """
        2. based on train
        """

        print('\n2. Training distribution optimization')

        thresh = optimal_test_thresh_equal_distribution(img_y_tr, y_pred_mean)
        q1_thresh = np.greater_equal(q1, thresh)
        concurrent([q1, q1_thresh, im_clean])

        print(f'thresh: {thresh}')

        # Test, train, both
        print('Kappa performance:')
        print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh))
        print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh))
        print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh))
        """
        3. CONSISTENT: based on train+set
        """

        print('\n3. all GT distribution optimization')

        thresh = optimal_test_thresh_equal_distribution(y_gt, y_pred_mean)
        q1_thresh = np.greater_equal(q1, thresh)
        concurrent([q1, q1_thresh, im_clean])

        print(f'thresh: {thresh}')

        # Test, train, both
        print('Kappa performance:')
        print('\ttrain:', foo_performance(img_y_tr, y_pred_mean, thresh))
        print('\ttestset:', foo_performance(img_y_te, y_pred_mean, thresh))
        print('\tboth:', foo_performance(y_gt, y_pred_mean, thresh))

        if 0:
            """
            4. DUMB/Not needed: Based on prediction of whole panel
            """

            thresh = optimal_test_thresh_equal_distribution(y_gt,
                                                            y_pred_mean,
                                                            mask_true=False)
            q1_thresh = np.greater_equal(q1, thresh)
            concurrent([q1, q1_thresh, im_clean])

    print('Done')
    def train_segm(self):
        folder_save = '/home/lameeus/data/ghent_altar/dataframes'

        info_batchnorm = '_batchnorm' if self.batch_norm else ''
        info_fixed = '_encfixed' if self.fixed_enc == 1 else '_prefixed' if self.fixed_enc == 2 else ''
        info_model = 'tiunet' if self.ti else 'unet'

        filename_single = f'pretrained/{info_model}_10lamb_kfold{info_fixed}{info_batchnorm}/d{self.depth}_single'
        path_single = os.path.join(folder_save, filename_single + '.csv')

        get_info = lambda: f'10lamb_kfold_pretrained{info_fixed}{info_batchnorm}/{info_model}_d{self.depth}_k{self.k}_ifold{i_fold}'

        img_y_all = self.k_fold_train_data.get_train_data_all().get_y_train()

        def get_model():
            if self.ti:
                model = self.get_tiunet_preenc(k=self.k, lr=self.lr_opt)

            else:
                model = self.get_unet_preenc(k=self.k, lr=self.lr_opt)

            if self.fixed_enc == 2:
                n_temp = NeuralNet(model)

                folder_weights = '/scratch/lameeus/data/ghent_altar/net_weight'
                folder1 = f'10lamb_kfold_pretrained{"_encfixed"}{info_batchnorm}'
                folder2 = f'{info_model}_d{self.depth}_k{self.k}_ifold{i_fold}'

                n_temp.load(os.path.join(folder_weights, folder1, folder2),
                            100)

                del (n_temp)

            return model

        w_ext = self.w_ext_in_ti if self.ti else self.w_ext_in_ae

        if not self.lr_opt:
            model_segm = get_model()
            find_learning_rate(model_segm, self.flow_segm, lr1=1e0)

        for i_fold in range(6):
            print(f'i_fold = {i_fold}')

            model_segm = get_model()
            n_segm = NeuralNet(model_segm, w_ext=w_ext)

            train_data_i = self.k_fold_train_data.k_split_i(i_fold)
            img_y_tr = train_data_i.get_y_train()
            img_y_te = train_data_i.get_y_test()
            flow_tr = get_flow(self.img_x,
                               img_y_tr,
                               w_patch=self.w_patch,
                               w_ext_in=w_ext)
            flow_te = get_flow(self.img_x,
                               img_y_te,
                               w_patch=self.w_patch,
                               w_ext_in=w_ext)

            info = get_info()

            for epoch in range(self.epochs):
                n_segm.train(flow_tr, flow_te, epochs=1, verbose=2, info=info)

                y_pred = n_segm.predict(self.img_x)
                thresh_single = optimal_test_thresh_equal_distribution(
                    img_y_all, y_pred)
                data_single_i = {'k': self.k, 'i_fold': i_fold, 'epoch': epoch}
                data_single_i.update(
                    foo_performance(img_y_te, y_pred, thresh_single))
                lst_data_single = [data_single_i]
                df_single = pd.DataFrame(lst_data_single)
                pandas_save(path_single, df_single, append=True)

        return
Exemple #8
0
    elif dataset_name == '19_hand_SE':
        train_data = get_19SE_shuang(mod=mod)
    else:
        train_data = get_13botleftshuang(mod=mod)

    # TODO normalise inputs This seems to be super important...
    # train_data.x = (1/255. * train_data.x).astype(np.float16)
    # train_data.x = (255. * train_data.x).astype(np.float16)

    x, y_tr, x_te, y_te = get_training_data(train_data)

    # To get w_ext
    w_ext = neuralNet0(mod=mod, k=1, verbose=1).w_ext

    flow_tr = get_flow(x[0], y_tr[0],
                       w_patch=10,  # Comes from 10
                       w_ext_in=w_ext
                       )
    
    flow_te = get_flow(x_te[0], y_te[0],
                       w_patch=10,  # Comes from 10
                       w_ext_in=w_ext
                       )

    b = 1

    class_weight = (1, 1)
    if b:
        # Balance the data
        class_weight_tr = get_class_weights(flow_tr)
        class_weight = tuple(c_i * c_j  for c_i, c_j  in zip(class_weight, class_weight_tr))