def getImage(srl_model, state, device): """ Gets an image by using the decoder of a SRL model (when available) :param srl_model: (Pytorch model) :param state: ([float]) the state vector from latent space :param device: (pytorch device) :return: ([float]) """ with th.no_grad(): state = th.from_numpy(np.array(state).reshape(1, -1)).float() state = state.to(device) net_out = srl_model.decode(state) img = detachToNumpy(net_out)[0].T img = deNormalize(img, mode="tf") return img[:, :, ::-1]
def learn(self, images_path, actions, rewards, episode_starts): """ Learn a state representation :param images_path: (numpy 1D array) :param actions: (np.ndarray) :param rewards: (numpy 1D array) :param episode_starts: (numpy 1D array) boolean array the ith index is True if one episode starts at this frame :return: (np.ndarray) the learned states for the given observations """ print("\nYour are using the following weights for the losses:") pprint(self.losses_weights_dict) # PREPARE DATA ------------------------------------------------------------------------------------------------- # here, we organize the data into minibatches # and find pairs for the respective loss terms (for robotics priors only) num_samples = images_path.shape[0] - 1 # number of samples # indices for all time steps where the episode continues indices = np.array([i for i in range(num_samples) if not episode_starts[i + 1]], dtype='int64') np.random.shuffle(indices) # split indices into minibatches. minibatchlist is a list of lists; each # list is the id of the observation preserved through the training minibatchlist = [np.array(sorted(indices[start_idx:start_idx + self.batch_size])) for start_idx in range(0, len(indices) - self.batch_size + 1, self.batch_size)] test_minibatchlist = DataLoader.createTestMinibatchList(len(images_path), MAX_BATCH_SIZE_GPU) # Number of minibatches used for validation: n_val_batches = np.round(VALIDATION_SIZE * len(minibatchlist)).astype(np.int64) val_indices = np.random.permutation(len(minibatchlist))[:n_val_batches] # Print some info print("{} minibatches for training, {} samples".format(len(minibatchlist) - n_val_batches, (len(minibatchlist) - n_val_batches) * BATCH_SIZE)) print("{} minibatches for validation, {} samples".format(n_val_batches, n_val_batches * BATCH_SIZE)) assert n_val_batches > 0, "Not enough sample to create a validation set" # Stats about actions if not self.continuous_action: print('Discrete action space:') action_set = set(actions) n_actions = int(np.max(actions) + 1) print("{} unique actions / {} actions".format(len(action_set), n_actions)) n_pairs_per_action = np.zeros(n_actions, dtype=np.int64) n_obs_per_action = np.zeros(n_actions, dtype=np.int64) for i in range(n_actions): n_obs_per_action[i] = np.sum(actions == i) print("Number of observations per action") print(n_obs_per_action) else: print('Continuous action space:') print('Action dimension: {}'.format(self.dim_action)) dissimilar_pairs, same_actions_pairs = None, None if not self.no_priors: if self.continuous_action: print('This option (priors) doesnt support continuous action space for now !') dissimilar_pairs, same_actions_pairs = findPriorsPairs(self.batch_size, minibatchlist, actions, rewards, n_actions, n_pairs_per_action) if self.use_vae and self.perceptual_similarity_loss and self.path_to_dae is not None: self.denoiser = SRLModules(state_dim=self.state_dim_dae, action_dim=self.dim_action, model_type="custom_cnn", cuda=self.cuda, losses=["dae"]) self.denoiser.load_state_dict(th.load(self.path_to_dae)) self.denoiser.eval() self.denoiser = self.denoiser.to(self.device) for param in self.denoiser.parameters(): param.requires_grad = False if self.episode_prior: idx_to_episode = {idx: episode_idx for idx, episode_idx in enumerate(np.cumsum(episode_starts))} minibatch_episodes = [[idx_to_episode[i] for i in minibatch] for minibatch in minibatchlist] data_loader = DataLoader(minibatchlist, images_path, n_workers=N_WORKERS, multi_view=self.multi_view, use_triplets=self.use_triplets, is_training=True, apply_occlusion=self.use_dae, occlusion_percentage=self.occlusion_percentage) test_data_loader = DataLoader(test_minibatchlist, images_path, n_workers=N_WORKERS, multi_view=self.multi_view, use_triplets=self.use_triplets, max_queue_len=1, is_training=False, apply_occlusion=self.use_dae, occlusion_percentage=self.occlusion_percentage) # TRAINING ----------------------------------------------------------------------------------------------------- loss_history = defaultdict(list) loss_manager = LossManager(self.model, loss_history) best_error = np.inf best_model_path = "{}/srl_model.pth".format(self.log_folder) start_time = time.time() # Random features, we don't need to train a model if len(self.losses) == 1 and self.losses[0] == 'random': global N_EPOCHS N_EPOCHS = 0 printYellow("Skipping training because using random features") th.save(self.model.state_dict(), best_model_path) for epoch in range(N_EPOCHS): # In each epoch, we do a full pass over the training data: epoch_loss, epoch_batches = 0, 0 val_loss = 0 pbar = tqdm(total=len(minibatchlist)) for minibatch_num, (minibatch_idx, obs, next_obs, noisy_obs, next_noisy_obs) in enumerate(data_loader): validation_mode = minibatch_idx in val_indices if validation_mode: self.model.eval() else: self.model.train() if self.use_dae: noisy_obs = noisy_obs.to(self.device) next_noisy_obs = next_noisy_obs.to(self.device) obs, next_obs = obs.to(self.device), next_obs.to(self.device) self.optimizer.zero_grad() loss_manager.resetLosses() decoded_obs, decoded_next_obs = None, None states_denoiser = None states_denoiser_predicted = None next_states_denoiser = None next_states_denoiser_predicted = None # Predict states given observations as in Time Contrastive Network (Triplet Loss) [Sermanet et al.] if self.use_triplets: states, positive_states, negative_states = self.model.forwardTriplets(obs[:, :3:, :, :], obs[:, 3:6, :, :], obs[:, 6:, :, :]) next_states, next_positive_states, next_negative_states = self.model.forwardTriplets( next_obs[:, :3:, :, :], next_obs[:, 3:6, :, :], next_obs[:, 6:, :, :]) elif self.use_autoencoder: (states, decoded_obs), (next_states, decoded_next_obs) = self.model(obs), self.model(next_obs) elif self.use_dae: (states, decoded_obs), (next_states, decoded_next_obs) = \ self.model(noisy_obs), self.model(next_noisy_obs) elif self.use_vae: (decoded_obs, mu, logvar), (next_decoded_obs, next_mu, next_logvar) = self.model(obs), \ self.model(next_obs) states, next_states = self.model.getStates(obs), self.model.getStates(next_obs) if self.perceptual_similarity_loss: # Predictions for the perceptual similarity loss as in DARLA # https://arxiv.org/pdf/1707.08475.pdf (states_denoiser, decoded_obs_denoiser), (next_states_denoiser, decoded_next_obs_denoiser) = \ self.denoiser(obs), self.denoiser(next_obs) (states_denoiser_predicted, decoded_obs_denoiser_predicted) = self.denoiser(decoded_obs) (next_states_denoiser_predicted, decoded_next_obs_denoiser_predicted) = self.denoiser(next_decoded_obs) else: states, next_states = self.model(obs), self.model(next_obs) # Actions associated to the observations of the current minibatch actions_st = actions[minibatchlist[minibatch_idx]] if not self.continuous_action: # Discrete actions, rearrange action to have n_minibatch ligns and one column, containing the int action actions_st = th.from_numpy(actions_st).view(-1, 1).requires_grad_(False).to(self.device) else: # Continuous actions, rearrange action to have n_minibatch ligns and dim_action columns actions_st = th.from_numpy(actions_st).view(-1, self.dim_action).requires_grad_(False).to(self.device) # L1 regularization if self.losses_weights_dict['l1_reg'] > 0: l1Loss(loss_manager.reg_params, self.losses_weights_dict['l1_reg'], loss_manager) if self.losses_weights_dict['l2_reg'] > 0: l2Loss(loss_manager.reg_params, self.losses_weights_dict['l2_reg'], loss_manager) if not self.no_priors: if self.n_actions == np.inf: print('This option (priors) doesnt support continuous action space for now !') roboticPriorsLoss(states, next_states, minibatch_idx=minibatch_idx, dissimilar_pairs=dissimilar_pairs, same_actions_pairs=same_actions_pairs, weight=self.losses_weights_dict['priors'], loss_manager=loss_manager) # TODO change here to classic call (forward and backward) if self.use_forward_loss: next_states_pred = self.model.forwardModel(states, actions_st) forwardModelLoss(next_states_pred, next_states, weight=self.losses_weights_dict['forward'], loss_manager=loss_manager) if self.use_inverse_loss: actions_pred = self.model.inverseModel(states, next_states) inverseModelLoss(actions_pred, actions_st, weight=self.losses_weights_dict['inverse'], loss_manager=loss_manager, continuous_action=self.continuous_action) if self.use_reward_loss: rewards_st = rewards[minibatchlist[minibatch_idx]].copy() # Removing negative reward rewards_st[rewards_st == -1] = 0 rewards_st = th.from_numpy(rewards_st).to(self.device) rewards_pred = self.model.rewardModel(states, next_states) rewardModelLoss(rewards_pred, rewards_st.long(), weight=self.losses_weights_dict['reward'], loss_manager=loss_manager) if self.use_autoencoder or self.use_dae: loss_type = "dae" if self.use_dae else "autoencoder" autoEncoderLoss(obs, decoded_obs, next_obs, decoded_next_obs, weight=self.losses_weights_dict[loss_type], loss_manager=loss_manager) if self.use_vae: kullbackLeiblerLoss(mu, next_mu, logvar, next_logvar, loss_manager=loss_manager, beta=self.beta) if self.perceptual_similarity_loss: perceptualSimilarityLoss(states_denoiser, states_denoiser_predicted, next_states_denoiser, next_states_denoiser_predicted, weight=self.losses_weights_dict['perceptual'], loss_manager=loss_manager) else: generationLoss(decoded_obs, next_decoded_obs, obs, next_obs, weight=self.losses_weights_dict['vae'], loss_manager=loss_manager) if self.reward_prior: rewards_st = rewards[minibatchlist[minibatch_idx]] rewards_st = th.from_numpy(rewards_st).float().view(-1, 1).to(self.device) rewardPriorLoss(states, rewards_st, weight=self.losses_weights_dict['reward-prior'], loss_manager=loss_manager) if self.episode_prior: episodePriorLoss(minibatch_idx, minibatch_episodes, states, self.discriminator, BALANCED_SAMPLING, weight=self.losses_weights_dict['episode-prior'], loss_manager=loss_manager) if self.use_triplets: tripletLoss(states, positive_states, negative_states, weight=self.losses_weights_dict['triplet'], loss_manager=loss_manager, alpha=0.2) # Compute weighted average of losses loss_manager.updateLossHistory() loss = loss_manager.computeTotalLoss() # We have to call backward in both train/val # to avoid memory error loss.backward() if validation_mode: val_loss += loss.item() # We do not optimize on validation data # so optimizer.step() is not called else: self.optimizer.step() epoch_loss += loss.item() epoch_batches += 1 pbar.update(1) pbar.close() train_loss = epoch_loss / float(epoch_batches) val_loss /= float(n_val_batches) # Even if loss_history is modified by LossManager # we make it explicit loss_history = loss_manager.loss_history loss_history['train_loss'].append(train_loss) loss_history['val_loss'].append(val_loss) for key in loss_history.keys(): if key in ['train_loss', 'val_loss']: continue loss_history[key][-1] /= epoch_batches if epoch + 1 < N_EPOCHS: loss_history[key].append(0) # Save best model if val_loss < best_error: best_error = val_loss th.save(self.model.state_dict(), best_model_path) if np.isnan(train_loss): printRed("NaN Loss, consider increasing NOISE_STD in the gaussian noise layer") sys.exit(NAN_ERROR) # Then we print the results for this epoch: if (epoch + 1) % EPOCH_FLAG == 0: print("Epoch {:3}/{}, train_loss:{:.4f} val_loss:{:.4f}".format(epoch + 1, N_EPOCHS, train_loss, val_loss)) print("{:.2f}s/epoch".format((time.time() - start_time) / (epoch + 1))) if DISPLAY_PLOTS: with th.no_grad(): self.model.eval() # Optionally plot the current state space plotRepresentation(self.predStatesWithDataLoader(test_data_loader), rewards, add_colorbar=epoch == 0, name="Learned State Representation (Training Data)") if self.use_autoencoder or self.use_vae or self.use_dae: # Plot Reconstructed Image if obs[0].shape[0] == 3: # RGB plotImage(deNormalize(detachToNumpy(obs[0])), "Input Image (Train)") if self.use_dae: plotImage(deNormalize(detachToNumpy(noisy_obs[0])), "Noisy Input Image (Train)") if self.perceptual_similarity_loss: plotImage(deNormalize(detachToNumpy(decoded_obs_denoiser[0])), "Reconstructed Image DAE") plotImage(deNormalize(detachToNumpy(decoded_obs_denoiser_predicted[0])), "Reconstructed Image predicted DAE") plotImage(deNormalize(detachToNumpy(decoded_obs[0])), "Reconstructed Image") elif obs[0].shape[0] % 3 == 0: # Multi-RGB for k in range(obs[0].shape[0] // 3): plotImage(deNormalize(detachToNumpy(obs[0][k * 3:(k + 1) * 3, :, :]), "image_net"), "Input Image {} (Train)".format(k + 1)) if self.use_dae: plotImage(deNormalize(detachToNumpy(noisy_obs[0][k * 3:(k + 1) * 3, :, :])), "Noisy Input Image (Train)".format(k + 1)) if self.perceptual_similarity_loss: plotImage(deNormalize( detachToNumpy(decoded_obs_denoiser[0][k * 3:(k + 1) * 3, :, :])), "Reconstructed Image DAE") plotImage(deNormalize( detachToNumpy(decoded_obs_denoiser_predicted[0][k * 3:(k + 1) * 3, :, :])), "Reconstructed Image predicted DAE") plotImage(deNormalize(detachToNumpy(decoded_obs[0][k * 3:(k + 1) * 3, :, :])), "Reconstructed Image {}".format(k + 1)) if DISPLAY_PLOTS: plt.close("Learned State Representation (Training Data)") # Load best model before predicting states self.model.load_state_dict(th.load(best_model_path)) print("Predicting states for all the observations...") # return predicted states for training observations self.model.eval() with th.no_grad(): pred_states = self.predStatesWithDataLoader(test_data_loader) pairs_loss_weight = [k for k in zip(loss_manager.names, loss_manager.weights)] return loss_history, pred_states, pairs_loss_weight