def test(self): mnist = input_data.read_data_sets('MNIST_data', one_hot=True) test_results = self.out_image.eval( feed_dict={ self.x: mnist.test.images, self.y_: mnist.test.labels, self.keep_prob: 1.0 }) combined_images = np.zeros( (0, 56)) # Empty array of 'correct' dimensions for concatenation for i in range(10): test_image = np.array(test_results[i]).reshape((28, 28)) test_image = self.post_process(test_image) actual_image = np.array(mnist.test.images[i]).reshape( (28, 28)) * 255 actual_image = np.rot90(actual_image) # Stack output image with actual horizontally, for comparison image_column = np.hstack((test_image, actual_image)) combined_images = np.vstack((combined_images, image_column)) Preprocessor.displayImage(combined_images)
preprocessing.displayImage(post_process(batch[0][0])) #print(batch[1][0]) m = re.match(r"^\D+(\d+)$", "model.ckpt-120") print(int(m.group(1))) datasetName = "datasets/" + "offices" mat_database = datasetName + ".mat" #mat_contents = h5py.File(mat_database, 'r') mat = scipy.io.loadmat(mat_database) image = mat["collection"][0,0]['image'] depths = mat["collection"][0,0]['depths'] print(len(mat["collection"][0])) print(image.shape) Preprocessor.displayImage(np.rot90(image)) Preprocessor.displayImage(depths) #print(mat["ans"]) image = np.zeros((32,32)) scim.imsave("test_output/debug" + str(15).zfill(4) + ".bmp", image) # Get number of images in 'offices' prefix = 'home_office' mat_files = glob.glob("datasets/" + prefix + "*.pkl") first = True # Don't load old (non-existent) network when training on the first chunk! pp = Preprocessor() # Dummy pp sum_sizes = 0 for filename in mat_files: # Get the actual name of the chunk regex = r"^.*/(" + prefix +".*)\.pkl$"