Exemple #1
0
 def predict_proba(self, X):
     assert self.theta_ is not None, 'you should fit before predict'
     if self.copy_X:
         X = X.copy()
     if self.normalize:
         X = StandardScaler_().fit_transform(X)
     X = np.hstack([np.ones((X.shape[0], 1)), X])
     return self._sigmoid(self.theta_, X)
Exemple #2
0
 def fit(self, X, y):
     if self.copy_X:
         X = X.copy()
     if self.normalize:
         X = StandardScaler_().fit_transform(X)
     X_b = np.c_[np.ones((len(X), 1)), X]  # 拼接构造含有常数项b的新样本数据
     if self.solver == 'gd':
         self._fit_gd(X_b, y)
     else:
         pass
     return self
Exemple #3
0
 def fit(self, X, y):
     if self.copy_X:
         X = X.copy()
     if self.normalize:
         X = StandardScaler_().fit_transform(X)
     X = np.hstack([np.ones((X.shape[0], 1)), X])
     theta = np.ones(X.shape[1])
     for _ in range(self.n_iters):
         theta -= self.alpha * self._dJ(theta, X, y)
     self.theta_ = theta
     self.coef_ = self.theta_[1:]
     self.intercept_ = self.theta_[0]
     return self
Exemple #4
0
 def predict(self, X_test):
     if self.copy_X:
         X_test = X_test.copy()
     if self.normalize:
         X_test = StandardScaler_().fit_transform(X_test)
     return np.c_[np.ones((len(X_test), 1)), X_test].dot(self._theta)