Exemple #1
0
def vision_predict(source, target, train_pid_path, train_score_path, test_pid_path, test_score_path):
    source_model_path, target_dataset_path = get_source_target_info(source, target)
    target_probe_path = target_dataset_path + '/probe'
    target_train_path = target_dataset_path + '/train'
    target_gallery_path = target_dataset_path + '/test'
    train_pair_predict(source_model_path, target_train_path, train_pid_path, train_score_path)
    test_pair_predict(source_model_path, target_probe_path, target_gallery_path, test_pid_path, test_score_path)
    predict_eval(target, test_pid_path)
Exemple #2
0
        batch_size=batch_size
    )


def pair_transfer_2grid():
    DATASET = '/home/cwh/coding/grid_train_probe_gallery/cross0'
    LIST = os.path.join(DATASET, 'pretrain/test_track.txt')
    TRAIN = os.path.join(DATASET, 'pretrain')
    train_images = reid_img_prepare(LIST, TRAIN)
    batch_size = 64
    # similar_persons = np.genfromtxt('../pretrain/grid_cross0/train_renew_pid.log', delimiter=' ')
    # similar_matrix = np.genfromtxt('../pretrain/grid_cross0/train_renew_ac.log', delimiter=' ')
    similar_persons = np.genfromtxt('../pretrain/grid_cross0/cross_filter_pid.log', delimiter=' ') - 1
    similar_matrix = np.genfromtxt('../pretrain/grid_cross0/cross_filter_score.log', delimiter=' ')

    pair_transfer(
        pair_generator_by_rank_list(train_images, batch_size, similar_persons, similar_matrix, train=True),
        pair_generator_by_rank_list(train_images, batch_size, similar_persons, similar_matrix, train=False),
        '../pretrain/pair_pretrain.h5',
        batch_size=batch_size
    )


if __name__ == '__main__':
    pair_transfer_2grid()
    test_pair_predict('../transfer/pair_transfer.h5',
                      '/home/cwh/coding/grid_train_probe_gallery/cross0/probe',
                      '/home/cwh/coding/grid_train_probe_gallery/cross0/gallery',
                      'pid_path', 'score_path'
                      )
Exemple #3
0
        pair_generator_by_rank_list(train_images, batch_size, similar_persons, similar_matrix, train=False),
        target,
        batch_size=batch_size, num_classes=class_count
    )


if __name__ == '__main__':
    # sources = ['cuhk_grid_viper_mix']
    sources = ['cuhk']
    target = 'market'
    pair_model('../pretrain/cuhk_pair_pretrain.h5', 751)
    for source in sources:
        pair_pretrain_on_dataset(source, target)

    transform_dir = '/home/cwh/coding/Market-1501'
    safe_remove('pair_transfer_pid.log')
    test_pair_predict('market_pair_pretrain.h5',
                      transform_dir + '/probe', transform_dir + '/test',
                      'pair_transfer_pid.log', 'pair_transfer_score.log')
    market_result_eval('pair_transfer_pid.log', TEST='/home/cwh/coding/Market-1501/test',
                       QUERY='/home/cwh/coding/Market-1501/probe')

    # sources = ['grid-cv-%d' % i for i in range(10)]
    # for source in sources:
    #     softmax_pretrain_on_dataset(source,
    #                                 project_path='/home/cwh/coding/rank-reid',
    #                                 dataset_parent='/home/cwh/coding')
    #     pair_pretrain_on_dataset(source,
    #                              project_path='/home/cwh/coding/rank-reid',
    #                              dataset_parent='/home/cwh/coding')