def add_model_specific_args(parent_parser): parser = child_argparser( LSTMStacked.add_model_specific_args(parent_parser)) temp_args, _ = parser.parse_known_args() if temp_args.input_size is not None and temp_args.input_size <= 2048: if temp_args.n_layers is not None: default_batch_size = 256 if temp_args.n_layers == 2: default_batch_size = 256 + 64 + 32 elif temp_args.n_layers == 1: default_batch_size = 512 + 32 parser.add_argument('-b', '--batch_size', type=int, default=default_batch_size) return parser
def add_model_specific_args(parent_parser): parser = child_argparser( pn.PredNet.add_model_specific_args(parent_parser)) # See if n_layers has been specified to infer default batch size temp_args, _ = parser.parse_known_args() if temp_args.n_layers is not None: if temp_args.n_layers == 2: default_batch_size = 256 + 64 + 32 elif temp_args.n_layers == 1: default_batch_size = 512 + 128 + 64 else: default_batch_size = 256 parser.add_argument('-b', '--batch_size', type=int, default=default_batch_size) return parser
def add_model_specific_args(parent_parser): parser = child_argparser( pn.PredNet.add_model_specific_args(parent_parser)) parser.add_argument('--layer_loss_mode', type=str, default='') parser.add_argument('--n_predictions', type=int, default=3) parser.add_argument('--gamma', type=float, default=0.97) # See if we have the right number of inputs and n_layers has been # specified to infer default batch size temp_args, _ = parser.parse_known_args() if temp_args.input_size is not None and temp_args.input_size <= 2048: if temp_args.n_layers is not None: default_batch_size = 256 if temp_args.n_layers == 1: default_batch_size = 256 + 128 parser.add_argument('-b', '--batch_size', type=int, default=default_batch_size) return parser
def add_model_specific_args(parent_parser): parser = child_argparser(BaseTorchModel.add_model_specific_args( parent_parser)) parser.add_argument('--n_layers', type=int, default=2) parser.add_argument('--lr', type=float, default=0.0001) parser.add_argument('--output_mode', type=str, default='error') parser.add_argument('--layer_loss_mode', type=str, default='first') # See if we have the right number of inputs and n_layers has been # specified to infer default batch size temp_args, _ = parser.parse_known_args() default_batch_size = 256 if temp_args.input_size is not None and temp_args.input_size <= 2048: if temp_args.n_layers is not None: if temp_args.n_layers == 2: default_batch_size = 256 + 128 elif temp_args.n_layers == 1: default_batch_size = 512 + 128 + 64 parser.add_argument('-b', '--batch_size', type=int, default=default_batch_size) return parser
def add_model_specific_args(parent_parser): parser = child_argparser(parent_parser) parser.add_argument('--n_layers', type=int, default=1) parser.add_argument('--lr', type=float, default=0.001) return parser
def add_model_specific_args(parent_parser): parser = child_argparser( LSTMStackedDense.add_model_specific_args(parent_parser)) parser.add_argument('--n_layers', type=int, default=1) parser.add_argument('-b', '--batch_size', type=int, default=512 + 128) return parser
def add_dataset_specific_args(parent_parser): parser = child_argparser( SchapiroFractalsDataset.add_dataset_specific_args(parent_parser)) parser.add_argument('--input_size', type=int, default=2048) return parser