Exemple #1
0
    def allComponents(self, N):
        result = 0

        # First term
        for K in range(N - 1, self.collapse + 1):
            Cd = self.diff(self.Cs[0], order=K)
            Md = spatial_diff(self.M, order=K - N + 1)
            tmp = np.tensordot(Cd,
                               Md,
                               axes=(tuple(range(1, K - N + 2)) + (0, ),
                                     tuple(range(0, K - N + 2))))
            tmp = symmetrize(tmp, list(range(len(tmp.shape))))

            result = result + 2 * binomial(K, N - 1) * tmp

        # Second summand
        for K in range(N, self.collapse + 1):
            for J in range(N + 1, K + 2):
                Cd = self.diff(self.Cs[0], order=K)
                Md = spatial_diff(self.M, order=K - J + 1)
                tmp = np.tensordot(Cd,
                                   Md,
                                   axes=(tuple(range(1, K - J + 2)) + (0, ),
                                         tuple(range(0, K - J + 2))))
                tmp = symmetrize(tmp, list(range(len(tmp.shape))))
                tmp = spatial_diff(tmp, order=J - N)
                for i in range(J - N + 1):
                    tmp = tmp.trace(0, len(tmp.shape) - 1)

                result = result + (-1)**J * binomial(K, J - 1) * binomial(
                    J, N) * tmp

        return result
Exemple #2
0
    def allComponents(self, N):
        V = np.tensordot(self.E, self.p, axes=(1, 1)) - np.tensordot(
            self.F, spatial_diff(self.p, order=1), axes=((2, 0), (1, 1)))
        result = (N + 2) * (self.degP - 1) * np.tensordot(
            self.Cs[N + 2], V, axes=(0, 0))

        # First M term
        tmp = np.tensordot(self.Cs[N + 1],
                           self.diff(self.M, order=0).swapaxes(1, 2),
                           axes=(0, 0))
        result -= (N + 1) * symmetrize(tmp, list(range(N + 1)))

        # The other M terms
        tmp = self.sumCoefficientDerivativeContraction(self.M,
                                                       N=N + 1,
                                                       freeIndices=0)
        if tmp is not None:
            result -= tmp

        # Multiply everything we have so far by (N+1)
        result = (N + 1) * result

        # The sum with the index swapping
        Cd = self.diff(self.Cs[N], order=1)
        for K in range(0, N + 1):
            result -= Cd.swapaxes(K, len(self.Cs.shape) - 2)

        # Last term
        result += 2 * spatial_diff(self.diff(self.Cs[N], order=2),
                                   order=1).trace(0, N + 2)

        return result
Exemple #3
0
 def coefficientDerivativeTrace(self, N=0, derivOrder=0, freeIndices=0):
     Cd = self.diff(expr=self.Cs[N], order=derivOrder + freeIndices)
     result = spatial_diff(expr=Cd,
                           order=derivOrder) if derivOrder > 0 else Cd
     for i in range(derivOrder):
         result = np.trace(result, axis1=0, axis2=len(result.shape) - 1)
     return result
Exemple #4
0
    def allComponents(self):
        # First term
        V = np.tensordot(self.p, self.E, axes=(1, 1)) - np.tensordot(
            spatial_diff(expr=self.p, order=1), self.F, axes=((0, 2), (2, 1)))
        result = 6 * (self.degP - 1) * np.tensordot(self.Cs[3], V, axes=(0, 1))

        # Second term. In the M_: term we swap B2 and mu
        result -= 4 * symmetrize(
            np.tensordot(self.Cs[2],
                         self.diff(expr=self.M, order=0).swapaxes(1, 2),
                         axes=(0, 0)), [0, 1])

        # Third to fifth term
        tmp = self.sumCoefficientDerivativeContraction(self.M, N=2)
        if tmp is not None:
            result -= 2 * tmp

        # Sixth summand. Need to swap the first and second axes to get into the B1 B2 order
        result -= self.diff(expr=self.Cs[1], order=1).swapaxes(0, 1)

        # Last summand
        tmp = self.sumCoefficientDerivativeTrace(N=1,
                                                 freeIndices=1,
                                                 combinatorial='K+1',
                                                 alternatingSign=True)
        if tmp is not None:
            result -= tmp

        return result
Exemple #5
0
    def allComponents(self):
        V = np.tensordot(self.p, self.E, axes=(1, 1)) - np.tensordot(
            spatial_diff(self.p, order=1), self.F, axes=((0, 2), (2, 1)))

        # First summand. It is transposed into the shape (B,nu)
        result = 2 * (self.degP - 1) * np.tensordot(self.Cs[2], V, axes=(0, 1))

        # Second summand
        result -= np.tensordot(self.Cs[1],
                               self.diff(self.M, order=0),
                               axes=(0, 0)).transpose()

        # Third summand
        tmp = self.sumCoefficientDerivativeContraction(self.M, N=1)
        if tmp is not None:
            result -= tmp

        # Fourth summand
        tmp = self.sumCoefficientDerivativeTrace(N=1,
                                                 freeIndices=1,
                                                 combinatorial='K+1',
                                                 alternatingSign=True)
        if tmp is not None:
            result -= tmp

        return result
Exemple #6
0
    def allComponents(self):
        result = 0

        # Third summand
        for K in range(2, self.collapse + 1):
            for J in range(2, K + 1):
                Cd = self.diff(self.Cs[0], order=K)
                Md = spatial_diff(self.M, order=K - J)
                tmp = np.tensordot(Cd,
                                   Md,
                                   axes=(tuple(range(1, K - J + 1)) + (0, ),
                                         tuple(range(0, K - J + 1))))
                tmp = symmetrize(tmp, list(range(len(tmp.shape))))
                tmp = spatial_diff(tmp, order=J + 1)
                for i in range(J + 1):
                    tmp = tmp.trace(0, len(tmp.shape) - 1)

                result = result + (-1)**J * binomial(K, J) * (J - 1) * tmp

        return result
Exemple #7
0
    def coefficientDerivativeContraction(self,
                                         coeff,
                                         N=0,
                                         derivOrder=0,
                                         Aposition=0,
                                         freeIndices=0):
        Cshape = self.Cs[N].shape
        Cd = self.diff(expr=self.Cs[N], order=derivOrder + freeIndices)
        coeffd = spatial_diff(expr=coeff,
                              order=derivOrder) if derivOrder == 0 else coeff

        # Calculate the index positions for the contraction
        Caxes = (len(Cshape), ) + tuple(
            range(len(Cd.shape) - derivOrder, len(Cd.shape)))
        caxes = (Aposition + derivOrder, ) + tuple(range(derivOrder))

        result = np.tensordot(Cd, coeffd, axes=(Caxes, caxes))

        return result