Exemple #1
0
def upper_bound_generating_set(n):
    """
    Estimate an upper bound for the integer k such that any group of order n has
    a generating subset of size at most k.

    Estimated by prime factorising n and adding together the exponents of each
    prime.

    The correctness of this bound may be reasoned as follows:

    Let G be a group of order n. Let g_0 be the identity 1 in G, and
    inductively, for each i, set H_i = <g_1, ... g_i>. Choose a g_{i + 1} not in
    H_i. Then the order of H_{i + 1} is a proper multiple of the order of H_i,
    by Lagrange's theorem. Say that r is the least integer such that H_r = G.
    We can write
    |G| = (|H_r| / |H_{r - 1}|) (|H_{r - 1}| / |H_{r - 2}|)
          ... (|H_2| / |H_1|) (|H_1| / |H_0|)
    ie |G| is a product of r nonunit integers, by construction. By considering
    prime factorisations it follows that r is at most the number of prime
    factors that |G| has, counted with multiplicity.

    For p-groups, groups of order 2p, and probably some other classes, this
    bound can be shown to be tight. Sadly we know that the only group of order
    15 is Z/15Z, which is generated by one element.
    """
    return sum(1 for _ in prime_factors(n))
def d(n):
    if n in cache:
        return cache[n]
    f = factors.factors(primes.prime_factors(n,prime_list))
    f.remove(n)
    cache[n] = sum(f)
    return sum(f)
Exemple #3
0
def answer():
    target = 15499 / 94744
    start = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23
    
    for n in count(start, start):
        factors = prime_factors(n).items()
        r = totient(factors) / (n - 1)
        if r < target:
            return n
def main():
    current_sieve_limit = 100000
    sieve = sieve_of_eratosthenes(current_sieve_limit)

    n = 2*3*4*5 - 1
    while True:
        n += 1

        # Re-compute the sieve
        if n > current_sieve_limit:
            current_sieve_limit *= 2
            sieve = sieve_of_eratosthenes(current_sieve_limit)

        if (len(prime_factors(n, sieve)) == 4
                and len(prime_factors(n+1, sieve)) == 4
                and len(prime_factors(n+2, sieve)) == 4
                and len(prime_factors(n+3, sieve)) == 4):
            print(n)
            break
Exemple #5
0
def answer():
    consecutive = []
    number = 646
    while len(consecutive) < 4:
        number += 1
        if len(primes.prime_factors(number)) == 4:
            consecutive.append(number)
        else:
            consecutive = []
    
    return consecutive[0]
Exemple #6
0
def least_common_multiple(m = []):
    nums = []
    mpfs = []
    for n in m:
        nums.append(primes.prime_factors(n))
    # Build the list
    for g in nums:
        for f in set(g):
            while mpfs.count(f) < g.count(f):
                mpfs.append(f)
    return primes.list_product(mpfs)
Exemple #7
0
def main():
    consecutive_count = 0
    for i in range(1000,1000000):
        factors = prime_factors(i)
        if len(set(factors)) == 4:
            consecutive_count += 1
        else:
            consecutive_count = 0
        if consecutive_count == 4:
            for j in range(i-3, i+1):
                print('%s: %s' % (j, factors))
            return
Exemple #8
0
def factors(number):
    """
    Given a number, return a list of all factors as (prime, exponent) tuples
    """
    factors = {}
    try:
        for factor in prime_factors(number):
            try:
                factors[factor] += 1
            except KeyError:
                factors[factor] = 1
    except TypeError:
        # prime_numbers() is None
        pass # No factors but itself

    if len(factors) == 0: return [(number, 1)]
    return [(prime, exp) for (prime, exp) in factors.items()]
Exemple #9
0
def p69(n):

    start = timer()

    et = {}
    phis = {}

    for i in primorial(n):
        et[i] = list(set(prime_factors(i)))

    for i in et:
        phi = i
        for x in et[i]:
            phi *= (1 - 1 / float(x))
        phis[i] = [phi, float(i) / phi]

    v = [x[1] for x in phis.values()]
    k = list(phis.keys())
    kmax = k[v.index(max(v))]

    print(kmax, phis[kmax])
    print('Elapsed time: ', timer() - start, 's')
Exemple #10
0
def p69(n):
    
    start=timer()
    
    et={}
    phis={}

    for i in primorial(n):
        et[i]=list(set(prime_factors(i)))
        
    for i in et:
        phi=i
        for x in et[i]:
            phi*=(1-1/float(x))
        phis[i]=[phi,float(i)/phi]
  
    v=[x[1] for x in phis.values()]
    k=list(phis.keys())
    kmax= k[v.index(max(v))]
       
    print (kmax,phis[kmax])
    print ('Elapsed time: ',timer()-start,'s')
Exemple #11
0
def main():
    relevant_ints = range(1, 21)
    prime_factors = [primes.prime_factors(n) for n in relevant_ints]

    # num_factors: { prime factor : number of occurrences }, e.g. 9 would consist of {3: 2}
    num_factors = {}
    for pf in prime_factors:
        pf_count = Counter(pf)
        for key, value in pf_count.items():
            # check if the num_factors already include this specific prime factorization
            # e.g. the prime factorization of 20 (2,2,5) and 18 (2,3,3) the prime factorization of 12 (2,2,3).
            if key in num_factors:
                if num_factors[key] < value:
                    num_factors[key] = value
            else:
                num_factors[key] = value

    product = 1
    for key, value in num_factors.items():
        product *= (key**value)

    return product
Exemple #12
0
    assert (is_prime(13))
    assert (is_prime(17))
    assert (is_prime(23))
    assert (is_prime(29))
    assert (is_prime(31))
    assert (is_prime(37))
    assert (not is_prime(-1))
    assert (not is_prime(0))
    assert (not is_prime(4))
    assert (not is_prime(6))
    assert (not is_prime(9))
    assert (not is_prime(15))
    assert (not is_prime(25))

with timeit("prime_factors test suite"):
    assert (list(prime_factors(2)) == [2])
    assert (list(prime_factors(3)) == [3])
    assert (list(prime_factors(5)) == [5])
    assert (list(prime_factors(2 * 3 * 5 * 7 * 11 *
                               13)) == [2, 3, 5, 7, 11, 13])
    assert (list(prime_factors(2 * 2 * 3 * 3 * 5 * 5 * 7 *
                               7)) == [2, 2, 3, 3, 5, 5, 7, 7])

with timeit("all_factors test suite"):
    assert (all_factors(512) == {1, 2, 4, 8, 16, 32, 64, 128, 256, 512})
    assert (all_factors(2 * 3 *
                        5) == {1, 2, 3, 5, 2 * 3, 2 * 5, 3 * 5, 2 * 3 * 5})

with timeit("is_prime perf test"):
    assert (is_prime(2**61 - 1))
Exemple #13
0
"""Solve problem 12 of Project Euler and store the answer in answer."""
from primes import prime_factors

target = 500
temp, divisors, i = 0, 0, 1
while divisors <= target:
    temp += i
    i += 1
    divisors, factors = 0, prime_factors(temp)
    for j in range(len(factors)):
        if j == 0:
            divisors += 1
            increase = 1
        elif factors[j] == factors[j - 1]:
            divisors += increase
        elif factors[j] != factors[j - 1]:
            divisors, increase = 2*divisors + 1, divisors + 1
    divisors += 1
answer = temp
Exemple #14
0
# numbers from 1 to 20?

import primes

def is_subset(la, lb):
    sa = set(la)
    #sb = set(lb)

    for i in sa:
        if la.count(i) > lb.count(i):
            return False
    return True

def least_common_multiple(m = []):
    nums = []
    mpfs = []
    for n in m:
        nums.append(primes.prime_factors(n))
    # Build the list
    for g in nums:
        for f in set(g):
            while mpfs.count(f) < g.count(f):
                mpfs.append(f)
    return primes.list_product(mpfs)


p8 = primes.prime_factors(8)
p16 = primes.prime_factors(16)

print(least_common_multiple(list(range(1, 21))))
Exemple #15
0
def divisors(n):
    
    pf = prime_factors(n)
    divisors = divisors_from_factorization(pf)
    return list(divisors)
Exemple #16
0
"""

Problem :
    What is the largest prime factor of the number 600851475143 ?

Performance time: ~0.0014s

"""

from timer import timer
from primes import prime_factors


timer.start()
print(max(prime_factors(600851475143)))
timer.stop()
Exemple #17
0
#!/usr/bin/env python3

#https://projecteuler.net/problem=5

import primes

prime_list = primes.primes(20)

factors = {}
for i in range(2, 21):
    tmp = primes.prime_factors(i, prime_list)
    tmp = { x: tmp.count(x) for x in set(tmp) }
    for j in tmp.keys():
        if tmp[j] > factors.get(j, 0):
            factors[j] = tmp[j]


ans = 1
for i in factors:
    ans *= (i ** factors[i])

print(ans)
Exemple #18
0
def main():
    print(prime_factors(num)[-1])
Exemple #19
0
#Let us list the factors of the first seven triangle numbers:

 #1: 1
 #3: 1,3
 #6: 1,2,3,6
#10: 1,2,5,10
#15: 1,3,5,15
#21: 1,3,7,21
#28: 1,2,4,7,14,28
#We can see that 28 is the first triangle number to have over five divisors.
#
#What is the value of the first triangle number to have over five hundred divisors?

import primes
import factors

def triangle_generator():
    tmp = 1
    while True:
        yield tmp * (tmp+1) // 2
        tmp += 1

prime_list = primes.primes(1000000)

for t in triangle_generator():
    tmp = factors.factors(primes.prime_factors(t, prime_list))
    if len(tmp) > 500:
        print(t)
        exit()

Exemple #20
0
def count_factors(x):
    pf = prime_factors(x)
    n = 1
    for prime, count in pf:
        n *= (count+1)
    return n
Exemple #21
0
 def test_prime_factors(self):
     self.assertEqual(primes.prime_factors(15), [3, 5])
     self.assertEqual(primes.prime_factors(460), [2, 2, 5, 23])
     self.assertEqual(primes.prime_factors(13195), [5, 7, 13, 29])
Exemple #22
0
def check_abundant(n):
    pf = factors.proper_factors(primes.prime_factors(n, prime_list))
    return sum(pf) > n
Exemple #23
0
import primes
print(primes.isprime(18))
print(primes.all_primes(18))
print(primes.prime_factors(18))
Exemple #24
0
 def test_prime_factors(self):
     self.assertEqual(tuple(prime_factors(2)), (2, ))
     self.assertEqual(tuple(prime_factors(6)), (2, 3))
     self.assertEqual(tuple(prime_factors(2000)), (2, 2, 2, 2, 5, 5, 5))
     self.assertEqual(tuple(prime_factors(2017)), (2017, ))
     self.assertEqual(tuple(prime_factors(2021)), (43, 47))
Exemple #25
0
def test_prime_factors():
    print('test_prime_factors')
    assert prime_factors(2) == [2]
    assert prime_factors(12) == [2, 2, 3]
Exemple #26
0
from time import process_time
from primes import prime_factors

print(process_time())
print(prime_factors(600851475143)[-1])
print(process_time())
Exemple #27
0
"""

Problem :
    How many fractions lie between 1/3 and 1/2 in the sorted set of reduced
    proper fractions for d ≤ 12,000?

Performance time : ~3.8s

"""

from timer import timer
from primes import prime_factors


timer.start()

#mark all possible denominators with their prime factors
compositeness = {n: set(prime_factors(n)) for n in range(12001)}
answer = 0

for d in range(5, 12001):
    d_factors = compositeness[d]
    for n in range(d // 3, d // 2):
        n_factors = compositeness[n]
        if not n_factors & d_factors:
            answer += 1

print(answer)

timer.stop()