Exemple #1
0
def possibilities(limit):
    for prime in primes(limit=sqrt(limit)):
        val = prime ** 2
        if is_totient_perm(val):
            return val
    for prime in primes(limit=limit ** (1.0 / 3)):
        val = prime ** 3
        if is_totient_perm(val):
            return val
Exemple #2
0
def num_distinct_prime_factors(n):
    upto = n/2
    num_factors = 0
    current_factors = set([])
    temp = n
    for p in primes.primes():
        if p > upto:
            break
        
        if n % p != 0:
            continue

        current_factors.add(p)
        if n in factors:
            current_factors = current_factors.union(factors[n])
            return len(current_factors), current_factors

        num_factors += 1

        n /= p

    if len(current_factors) == 0:
        current_factors.add(n)   # n is prime
        
    factors[temp] = current_factors
    return len(current_factors), current_factors
Exemple #3
0
 def init_primes(self):  # initie le tableau des nombres premiers <987654321
     primes_numbers = primes.primes(987654321)
     self.correct_primes = set([
         x for x in primes_numbers
         if (len(set(str(x))) == len(str(x)) and ('0' not in set(str(x))))
     ])
     del primes_numbers
Exemple #4
0
def build_prime_set(N):
    for p in primes.primes():
        
        if p >= N:
            break
        
        g_primes.add(p)
def euler72(upper) :
	p = primes.primes(upper)
	d = [-1] * upper

	for j, pn in enumerate(p) :
		#print pn, "\r",
		if pn >= upper: break
		L = pn - 1
		#d[pn] = L
		a = [pn]
		for val, k in currentPrimeIterator(pn, upper, pn, L) :
			d[k] = val
			a.append(k)
		for x in a :
			for i in xrange(j) :
				px = p[i]
				for val, k in lowerPrimeIterator(x*px, upper, x, L*x) :
					if not k in d :
						d[k] = val
	print

	#for i,v in enumerate(d):
	#	if v == -1 :
	#		print i
	#print sum(v for k,v in d.iteritems())
	print sum(d)
	for i,v in enumerate(d):
		print i,v
	#for k,v in d.iteritems() :
	#	print k, v
	#print visited - len(p), sum((1 if e == 0 else 1) for e in d)
	print
def euler72(limit) :
	global count
	print "*** %d" % limit
	count = 0
	p = primes.primes(limit+1)
	results = [0] * (limit+1)
	expandPrimes(results, p, limit)
	expandComposites(results, p, limit)
	expandEverythingElse(results, p, limit)

	print
	print [i for i,x in enumerate(results) if x == 0 and i >= 2]
	#for i,x in enumerate(results) :
	#	print i, x
	return sum(results)

def test_euler72() :
	a = [[5,9], [6,11], [7,17], [8,21], [9, 27], [10, 31], \
		[11, 41], [12,45], [13,57], [14,63], [15,71], [16,79], [17,95], [18,101], [19,119], [20,127], \
		[21,139], [22,149], [23, 171], [24, 179], [25, 199], [26, 211], [27, 229], [28, 241], [29, 269], \
		[30, 277], [31, 307], [32, 323], [33, 343], [34, 359], [35, 383], [36, 395], \
		[1000, 304191]]
	for r in a :
		result = euler72(r[0])
		if result != r[1] :
			print "%d: expecting %d, got %d" % (r[0], r[1], result)
		else : print "Success: %d" % r[0]

if __name__ == "__main__" :
	#test_euler72()
	r = euler72(1000*1000)
	#r = euler72(1000)
	print
	print r
Exemple #7
0
def main():
    # I generate a sieve (with erastophene) of the 500500 first primes, actually a bit more beacause the upper bound is
    # not really accurate
    sieve = primes.primes(upper_bound_prime(500500))
    # the length of sieve is initially 530758 so I restrict its length to  500500
    sieve = sieve[:500500]
    # I want to generate a list which is a copy sieve where I add the powers of the form : "element of sieve"^2
    # But when for a element of sieve this item is greater than the last element of the sieve I will do the same with
    # the formula "element of sieve"^4 until I reach the same limit then with "element"^8 and so on
    # finally I will take the 500500 smallest items of this list and multiply them
    # This number is the smallest with 2^500500 divisors
    # Indeed the sum of the powers of the prime factors of a number with 2^n divisors is n
    # And since I have choosen the smallest prime powers it is indeed the smallest number with 2^n divisors
    limit = sieve[-1]
    i = 0
    j = 2
    test = True
    resultat = 1

    while test:
        while sieve[i]**j < limit:
            sieve.append(sieve[i]**j)
            i += 1
        j *= 2
        if i == 0:
            test = False
        i = 0
    # Now I will take the 500500 smallest elements of sieve
    t = heapq.nsmallest(500500, sieve)
    # And finally I make the product modulo 500500507 of all the elements in t
    for k in t:
        resultat = (resultat * k) % 500500507

    print(resultat)
    print('temps d execution', time.perf_counter() - start, 'sec')
Exemple #8
0
def main():
    start = time.perf_counter()
    p = primes.primes(5000)
    i = 0
    resultat = 0

    while p[i] < 1000:
        i += 1

    p = p[i:len(p)]
    p1 = [0] * len(p)

    for j in range(len(p1)):
        p1[j] = lucas(10**18, 10**9, p[j])

    for a1 in range(len(p) - 2):
        pa = p[a1]
        pla = p1[a1]
        for b1 in range(a1 + 1, len(p) - 1):
            nc1 = [pa, p[b1]]
            ac1 = [pla, p1[b1]]
            nab, aab = chinese_remainder(nc1, ac1)
            for c1 in range(b1 + 1, len(p)):
                nc2 = [nab, p[c1]]
                ac2 = [aab, p1[c1]]
                resultat += chinese_remainder(nc2, ac2)[1]

    print(resultat-20)
    print('temps d execution', time.perf_counter() - start, 'sec')
Exemple #9
0
def main():
    # I generate a sieve (with erastophene) of the 500500 first primes, actually a bit more beacause the upper bound is
    # not really accurate
    sieve = primes.primes(upper_bound_prime(500500))
    # the length of sieve is initially 530758 so I restrict its length to  500500
    sieve = sieve[:500500]
    # I want to generate a list which is a copy sieve where I add the powers of the form : "element of sieve"^2
    # But when for a element of sieve this item is greater than the last element of the sieve I will do the same with
    # the formula "element of sieve"^4 until I reach the same limit then with "element"^8 and so on
    # finally I will take the 500500 smallest items of this list and multiply them
    # This number is the smallest with 2^500500 divisors
    # Indeed the sum of the powers of the prime factors of a number with 2^n divisors is n
    # And since I have choosen the smallest prime powers it is indeed the smallest number with 2^n divisors
    limit = sieve[-1]
    i = 0
    j = 2
    test = True
    resultat = 1

    while test:
        while sieve[i]**j < limit:
            sieve.append(sieve[i]**j)
            i += 1
        j *= 2
        if i == 0:
            test = False
        i = 0
    # Now I will take the 500500 smallest elements of sieve
    t = heapq.nsmallest(500500, sieve)
    # And finally I make the product modulo 500500507 of all the elements in t
    for k in t:
        resultat = (resultat * k) % 500500507

    print(resultat)
    print('temps d\'exécution', time.perf_counter() - start, 'sec')
Exemple #10
0
def euler72(upper):
    p = primes.primes(upper)
    d = [-1] * upper

    for j, pn in enumerate(p):
        #print pn, "\r",
        if pn >= upper: break
        L = pn - 1
        #d[pn] = L
        a = [pn]
        for val, k in currentPrimeIterator(pn, upper, pn, L):
            d[k] = val
            a.append(k)
        for x in a:
            for i in xrange(j):
                px = p[i]
                for val, k in lowerPrimeIterator(x * px, upper, x, L * x):
                    if not k in d:
                        d[k] = val
    print

    #for i,v in enumerate(d):
    #	if v == -1 :
    #		print i
    #print sum(v for k,v in d.iteritems())
    print sum(d)
    for i, v in enumerate(d):
        print i, v
    #for k,v in d.iteritems() :
    #	print k, v
    #print visited - len(p), sum((1 if e == 0 else 1) for e in d)
    print
Exemple #11
0
    def do_GET(self):
        log.info("GET Request: %s" % self.path)
        query = parse_qs(urlparse(self.path).query)
        status = self._determine_status(query)

        if status != 200:
            self.send_error(status, message=self.message, explain=self.explain)
            return

        lo = int(query[self.LO][0])
        hi = int(query[self.HI][0])

        cached = r.get((lo, hi))

        if cached is not None:
            log.info("Found answer in cache")
            response = cached
        else:
            log.info("Calculating and caching answer")
            response = ','.join(list(map(str, primes(lo, hi)))).encode()
            r.set((lo, hi), response)

        log.info("Writing back: %s" % bytes.decode(response))

        self.send_response(status)
        self._headers()
        self.wfile.write(response)
Exemple #12
0
def euler49():
    p = primes()
    ps = [x for x in p.primesLessThan(10000) if x > 999 ]
    retVal = []
    # print(ps)

    for item in ps:
        # item = 1487
        s = list(str(item))
        perms = [
            listToInt(i)
            for i in permutations(s) 
            if listToInt(i) in ps ]

        perms.sort()
        diffs = differences(perms)
        for key, val in diffs.items():
            for k,v in diffs.items():
                if key != k:
                    val_set = set(val)
                    intersections = val_set.intersection(v)
                    if len(intersections) > 0:
                        for i in intersections:
                            maxVal = key
                            midVal = key - i
                            minVal = key - 2*i
                            if maxVal in ps and midVal in ps and minVal in ps:
                                if maxVal in perms and midVal in perms and minVal in perms:
                                    ret = str(minVal) + str(midVal) + str(maxVal)
                                    if ret not in retVal:
                                        retVal.append(ret)
    print(retVal)
Exemple #13
0
def euler5b(list):

    k = max(list)

    p = primes.primes(k)
    a = [0] * len(p)

    for j in list:

        # get prime factors
        f = primes.primeFactors(j)

        # iterate over p[i]
        for i in range(0, len(p)):

            # count of this prime in the prime factors
            c = len(filter(lambda x: x == p[i], f))

            a[i] = max(c, a[i])

    # compute the final answer
    r = 1
    for i in range(0, len(p)):
        r *= p[i] ** a[i]

    return r
Exemple #14
0
def main():
    start = time.perf_counter()
    p = primes.primes(5000)
    i = 0
    resultat = 0

    while p[i] < 1000:
        i += 1

    p = p[i:len(p)]
    p1 = [0] * len(p)

    for j in range(len(p1)):
        p1[j] = lucas(10**18, 10**9, p[j])

    for a1 in range(len(p) - 2):
        pa = p[a1]
        pla = p1[a1]
        for b1 in range(a1 + 1, len(p) - 1):
            nc1 = [pa, p[b1]]
            ac1 = [pla, p1[b1]]
            nab, aab = chinese_remainder(nc1, ac1)
            for c1 in range(b1 + 1, len(p)):
                nc2 = [nab, p[c1]]
                ac2 = [aab, p1[c1]]
                resultat += chinese_remainder(nc2, ac2)[1]

    print(resultat - 20)
    print('temps d\'exécution', time.perf_counter() - start, 'sec')
def main():
    import time
    # 启动pyx编译器
    import pyximport
    pyximport.install()
    # Cython的素数算法实现
    import primesCy
    # Python的素数算法实现
    import primes

    print("Cython:")

    t1 = time.time()
    print(primesCy.primes(500))

    t2 = time.time()
    print("Cython time: %s" % (t2 - t1))

    print("")

    print("Python")

    t1 = time.time()
    print(primes.primes(500))

    t2 = time.time()
    print("Python time: %s" % (t2 - t1))
Exemple #16
0
def getNumberOfDivisors(num):
    numDivisors = 1
    p = primes()
    factorization = p.getPrimeFactorization(num)
    counter = Counter(factorization)
    for v in counter.values():
        numDivisors = numDivisors * (v + 1)
    return numDivisors
Exemple #17
0
def test_first_primes():
    a, b, c, d, e = take(5, primes())

    assert a == 2
    assert b == 3
    assert c == 5
    assert d == 7
    assert e == 11
Exemple #18
0
def euler7(n):

   i = 2
   while (primes.piLowerBound(i) < n):
      i *= 2

   p = primes.primes(i)
   return p[n-1]
Exemple #19
0
def euler46() :
	p = primes.primes(1000*1000)
	for i in range(1,len(p)) :
		y = p[1: i+1]
		for x in range(p[i] + 1, p[i + 1]) :
			if (x&1) and (not test(x, y)) :
				#print y
				return x
Exemple #20
0
def main():
    s = 0
    for k in p.primes():
        if k < 2 * 10 ** 6:
            s += k
        else:
            break
    return s
    def test_faq_cython_compile(self):
        fLOG(
            __file__,
            self._testMethodName,
            OutputPrint=__name__ == "__main__")

        from ensae_teaching_cs.faq.faq_cython import compile_cython_single_script
        temp = get_temp_folder(__file__, "temp_cython_primes")
        newfile = os.path.join(temp, "primes.pyx")
        with open(newfile, "w") as f:
            f.write(TestFaqCython.primes_pyx)
        cwd = os.getcwd()

        if is_travis_or_appveyor() == "travis":
            # the unit test does not end on travis
            warnings.warn("test_faq_cython_compile not test on travis")
            return

        compile_cython_single_script(newfile, fLOG=fLOG, skip_warn=False)

        # we checked it worked
        res = platform.architecture()
        if sys.platform.startswith("win"):
            ext = "win_amd64" if res[0] == "64bit" else "win32"
            name = "primes.cp%d%d-%s.pyd" % (
                sys.version_info[0], sys.version_info[1], ext)
        elif sys.version_info[:2] >= (3, 8):
            ext = "x86_64-linux-gnu" if res[0] == "64bit" else "x86-linux-gnu"
            name = "primes.cpython-%d%d-%s.so" % (
                sys.version_info[0], sys.version_info[1], ext)
        else:
            ext = "x86_64-linux-gnu" if res[0] == "64bit" else "x86-linux-gnu"
            name = "primes.cpython-%d%dm-%s.so" % (
                sys.version_info[0], sys.version_info[1], ext)
        fname = os.path.join(temp, name)
        fLOG(fname)
        if not os.path.exists(fname):
            raise FileNotFoundError("Not found: '{0}'. Found:\n{1}".format(
                fname, "\n".join(os.listdir(temp))))

        sys.path.append(temp)
        import primes
        del sys.path[-1]

        p = primes.primes(100)
        fLOG(p)
        self.assertEqual(p, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
                             61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
                             139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
                             211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
                             281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
                             367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
                             443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
                             523, 541])

        fLOG(os.getcwd())
        self.assertEqual(cwd, os.getcwd())
Exemple #22
0
def generate_primes(M):
    for p in primes.primes():
        
        if p > M:
            return
        
        plist.append(p)
        pset.add(p)
        results[p] = p - 1
Exemple #23
0
def smallest_prime_nonfactor_(ns):
    ps = primes(1000)
    for p in ps:
        factor = False
        for n in ns:
            if n % p == 0:
                factor = True
        if not factor:
            return p
    return "Not found"
Exemple #24
0
 def test_negative_case(self):
     a = [-40, -2]
     ans = _(
         "The prime numbers with a maximum value of {} is {} and you returned {}. \n You should check the conditions to be a prime number."
     )
     for i in range(len(a)):
         stu_ans = primes.primes(a[i])
         corr_ans = corr.primes(a[i])
         self.assertEqual(corr_ans, stu_ans,
                          ans.format(a[i], corr_ans, stu_ans))
Exemple #25
0
 def test_primes(self):
     for i, p in zip(range(50), primes()):
         if i == 0:
             self.assertEqual(p, 2)
         if i == 1:
             self.assertEqual(p, 3)
         if i == 9:
             self.assertEqual(p, 29)
         if i == 49:
             self.assertEqual(p, 229)
Exemple #26
0
 def test_primes(self):
     a = [2, 70]
     ans = _(
         "The prime numbers with a maximum value of {} is {} and you returned {}."
     )
     for i in range(len(a)):
         stu_ans = primes.primes(a[i])
         corr_ans = corr.primes(a[i])
         self.assertEqual(corr_ans, stu_ans,
                          ans.format(a[i], corr_ans, stu_ans))
Exemple #27
0
def primefac(n,prints=False,cumul=[]):
    for p in primes.primes(n):
        if n%p == 0:
            if prints:
                print p
            cumul.append(p)
            if n/p  == 1:
                return cumul
            else:
                return primefac(n/p, prints, cumul)
Exemple #28
0
def prime_factorization(n):
    pri = primes(int(n / 2))
    if len(pri) == 0:
        return [n]  # base case - if there are no primes less than the number
    i = 0
    for p in pri:
        if n % p == 0:
            # if divisible, recursively find the factorization
            return [p] + prime_factorization(int(n / p))
    # if no primes fit the bill, another base case - this number is prime
    return [n]
Exemple #29
0
def naive_factor(n):
    f = dict()
    if n < 0:
        n = -n
        f[-1] = 1
    root_n = int(sqrt(n))
    for p in take_while(lambda p: n > 1 and p <= root_n, primes()):
        n, i = div_while(n, p)
        if i > 0:
            f = dict_sum(f, {p: i})
    return f if n == 1 else dict_sum(f, {n: 1})
Exemple #30
0
def primeFac(n):
  s = int(sqrt(n))

  if s == 1:
    return [n]

  for x in primes(s):
    if n % x == 0:
      return [x] + primeFac(n / x)

  return [n]
Exemple #31
0
def biggest_prime_factor(n):
  max = int(math.floor(math.sqrt(n)))
  ps = primes.primes(max)
  i = len(ps) - 1

  while i:
    if n % ps[i] == 0:
      return ps[i]

    i -= 1

  return 1
Exemple #32
0
def prime_factors(n):
    """Generate prime factors of n"""
    if n == 1: return
    for i in primes():
        yielded = False
        while n % i == 0:
            n /= i
            if not yielded:
                yield i
                yielded = True
            if n == 1:
                return
    def test_faq_cython_compile(self):
        fLOG(
            __file__,
            self._testMethodName,
            OutputPrint=__name__ == "__main__")

        from ensae_teaching_cs.faq.faq_cython import compile_cython_single_script
        temp = get_temp_folder(__file__, "temp_cython_primes")
        newfile = os.path.join(temp, "primes.pyx")
        with open(newfile, "w") as f:
            f.write(TestFaqCython.primes_pyx)
        cwd = os.getcwd()

        if is_travis_or_appveyor() == "travis":
            # the unit test does not end on travis
            warnings.warn("test_faq_cython_compile not test on travis")
            return

        compile_cython_single_script(newfile, fLOG=fLOG, skip_warn=False)

        # we checked it worked
        res = platform.architecture()
        if sys.platform.startswith("win"):
            ext = "win_amd64" if res[0] == "64bit" else "win32"
            name = "primes.cp%d%d-%s.pyd" % (
                sys.version_info[0], sys.version_info[1], ext)
        else:
            ext = "x86_64-linux-gnu" if res[0] == "64bit" else "x86-linux-gnu"
            name = "primes.cpython-%d%dm-%s.so" % (
                sys.version_info[0], sys.version_info[1], ext)
        fname = os.path.join(temp, name)
        fLOG(fname)
        if not os.path.exists(fname):
            raise FileNotFoundError("Not found: '{0}'. Found:\n{1}".format(
                fname, "\n".join(os.listdir(temp))))

        sys.path.append(temp)
        import primes
        del sys.path[-1]

        p = primes.primes(100)
        fLOG(p)
        self.assertEqual(p, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
                             61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
                             139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
                             211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
                             281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
                             367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
                             443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
                             523, 541])

        fLOG(os.getcwd())
        self.assertEqual(cwd, os.getcwd())
Exemple #34
0
def solve(n):
    ans = n-1

    prime_list = primes.primes(int(n/2))
    for i in combos(prime_list, n/2):
        tmp = product(i)
        tmp = triangle((n-tmp)//tmp)
        if len(i) % 2 == 0:
            ans -= tmp 
        else:
            ans += tmp
    return ans * 6
Exemple #35
0
def first_with(target):
    smallest = {}
    counts = {}
    for p in primes():
        if p > 99:
            for choice in choices(p):
                if choice not in smallest:
                    smallest[choice] = p
                count = counts.setdefault(choice, 0) + 1
                counts[choice] = count
                if count == target:
                    return smallest[choice]
Exemple #36
0
def candidates(count, limit):
    root = int(limit ** (1.0 / count))
    if count == 1:
        for num in xrange(root - (1 - (root % 2)), 2, -2):
            if is_prime(num):
                yield [num]
        yield [2]
    else:
        for prime in primes(start=root, limit=limit):
            rest = candidates(count - 1, limit // prime)
            for nums in rest:
                yield [prime] + nums
Exemple #37
0
def main():
    start = time.perf_counter()
    test = 1
    k = 1
    pri = primes.primes(1000000)

    while test:
        k += 1
        if reste(k, pri) > 10**10:
            test = False

    print(k)
    print('temps d\'exécution', time.perf_counter() - start, 'sec')
Exemple #38
0
 def test_primes(self):
     cases = [
         ((20, ), [
             2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
             61, 67, 71
         ]),
         ((1, 6, 2), [3, 7, 13]),
         ((10, 20, 2), [31, 41, 47, 59, 67]),
         ((98, 101), [523, 541, 547]),
     ]
     for args, expected in cases:
         result = [x for x in itertools.islice(primes(), *args)]
         self.assertEqual(result, expected)
Exemple #39
0
def main():
    start = time.perf_counter()
    test = 1
    k = 1
    pri = primes.primes(1000000)

    while test:
        k += 1
        if reste(k, pri) > 10**10:
            test = False

    print(k)
    print('temps d execution', time.perf_counter() - start, 'sec')
Exemple #40
0
    def test_faq_cython_compile(self):
        fLOG(__file__,
             self._testMethodName,
             OutputPrint=__name__ == "__main__")

        from src.ensae_teaching_cs.faq.faq_cython import compile_cython_single_script
        temp = get_temp_folder(__file__, "temp_cython_primes")
        primes = os.path.join(temp, "..", "primes.pyx")
        shutil.copy(primes, temp)
        newfile = os.path.join(temp, "primes.pyx")
        cwd = os.getcwd()

        if "travis" in sys.executable:
            # the unit test does not end on travis
            warnings.warn("test_faq_cython_compile not test on travis")
            return

        compile_cython_single_script(newfile, fLOG=fLOG)

        # we checked it worked
        if sys.version_info[:2] < (3, 5):
            assert os.path.exists(os.path.join(temp, "primes.pyd"))
        else:
            res = platform.architecture()
            ext = "win_amd64" if res[0] == "64bit" else "win32"
            name = "primes.cp%d%d-%s.pyd" % (sys.version_info[0],
                                             sys.version_info[1], ext)
            fname = os.path.join(temp, name)
            fLOG(fname)
            assert os.path.exists(fname)

        sys.path.append(temp)
        import primes
        del sys.path[-1]

        p = primes.primes(100)
        fLOG(p)
        assert p == [
            2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
            67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
            139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
            211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
            281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
            367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
            443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
            523, 541
        ]

        fLOG(os.getcwd())
        assert cwd == os.getcwd()
Exemple #41
0
def primePowerCounts(n):
    """
    When given a number n with prime factorisation p1^k1·p2^k2·...·pm^km,
    iterates over the numbers k1, k2, ..., km.
    """
    p = 2
    it = primes()
    while (p := next(it)) ** 2 <= n:
        count = 0
        while n % p == 0:
            n //= p
            count += 1
        if count > 0:
            yield count
Exemple #42
0
def factor_base(n, t):
    # res = [-1]
    # if n % 2 == 0:
        # res += [2]
    # pi = skip(1, primes()) # skip 2
    res = [-1]
    pi = primes()
    p = next(pi)
    while p <= t:
        # if legendre(n, p) == 1:
        if legendre(n, p) != -1:
            res += [p]
        p = next(pi)
    return res
Exemple #43
0
def not_working():
    for s in ps():
        print s
        for p in primes():
            if p > 10**6:
                break
            if p > s[-1]:
                t = list(s)
                t.append(p)
                if check(t):
                    print "win"
                    print t
                    print sum(t)
                    break
Exemple #44
0
    def test_faq_cython_compile(self):
        fLOG(
            __file__,
            self._testMethodName,
            OutputPrint=__name__ == "__main__")

        from src.ensae_teaching_cs.faq.faq_cython import compile_cython_single_script
        temp = get_temp_folder(__file__, "temp_cython_primes")
        primes = os.path.join(temp, "..", "primes.pyx")
        shutil.copy(primes, temp)
        newfile = os.path.join(temp, "primes.pyx")
        cwd = os.getcwd()

        if "travis" in sys.executable:
            # the unit test does not end on travis
            warnings.warn("test_faq_cython_compile not test on travis")
            return

        compile_cython_single_script(newfile, fLOG=fLOG)

        # we checked it worked
        if sys.version_info[:2] < (3, 5):
            assert os.path.exists(os.path.join(temp, "primes.pyd"))
        else:
            res = platform.architecture()
            ext = "win_amd64" if res[0] == "64bit" else "win32"
            name = "primes.cp%d%d-%s.pyd" % (
                sys.version_info[0], sys.version_info[1], ext)
            fname = os.path.join(temp, name)
            fLOG(fname)
            assert os.path.exists(fname)

        sys.path.append(temp)
        import primes
        del sys.path[-1]

        p = primes.primes(100)
        fLOG(p)
        assert p == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
                     61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
                     139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
                     211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
                     281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
                     367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
                     443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
                     523, 541]

        fLOG(os.getcwd())
        assert cwd == os.getcwd()
Exemple #45
0
def main():
    start = time.perf_counter()
    p = primes.primes(160001)
    result = 0
    count = 0
    i = 3

    while count < 40:
        if pow(10, 10**9, 9 * p[i]) == 1:
            count += 1
            result += p[i]
        i += 1

    print(result)
    print('temps d execution', time.perf_counter() - start, 'sec')
Exemple #46
0
def main():
    p = primes.primes(1000008)
    compteur = 0

    for i in range(2, len(p) - 1):
        p1 = p[i]
        p2 = p[i + 1]
        k = 1
        u = str(k) + str(p1)
        while int(u) % p2 != 0:
            k += 1
            u = str(k) + str(p1)
        compteur += int(u)

    print(compteur)
Exemple #47
0
def euler72(limit):
    global count
    print "*** %d" % limit
    count = 0
    p = primes.primes(limit + 1)
    results = [0] * (limit + 1)
    expandPrimes(results, p, limit)
    expandComposites(results, p, limit)
    expandEverythingElse(results, p, limit)

    print
    print[i for i, x in enumerate(results) if x == 0 and i >= 2]
    #for i,x in enumerate(results) :
    #	print i, x
    return sum(results)
Exemple #48
0
def main():
    p = primes.primes(1000008)
    compteur = 0

    for i in range(2, len(p)-1):
        p1 = p[i]
        p2 = p[i+1]
        k = 1
        u = str(k)+str(p1)
        while int(u) % p2 != 0:
            k += 1
            u = str(k)+str(p1)
        compteur += int(u)

    print(compteur)
Exemple #49
0
def main():
    start = time.perf_counter()
    p = primes.primes(160001)
    result = 0
    count = 0
    i = 3

    while count < 40:
        if pow(10, 10**9, 9 * p[i]) == 1:
            count += 1
            result += p[i]
        i += 1

    print(result)
    print('temps d\'exécution', time.perf_counter() - start, 'sec')
Exemple #50
0
def p033():
    top = 1
    bottom = 1

    for a in xrange(11, 100):
        for b in xrange(a+1, 100):
            if curiousp(a,b):
                top *= a
                bottom *= b

    for p in primes():
        if p > top:
            return bottom
        while (top % p) == (bottom % p) == 0:
            top /= p
            bottom /= p
Exemple #51
0
def main():
    start = time.perf_counter()
    pri = primes.primes(10**8)
    a = []
    resultat = 1

    for k in pri:
        a.append((k, padic_order(10**8, k)))
    del pri

    for k in a:
        terme = 1 + pow(k[0], 2 * k[1], 1000000009)
        resultat = (resultat * terme) % 1000000009

    print(resultat)
    print('temps d\'exécution', time.perf_counter() - start, 'sec')
Exemple #52
0
def euler47() :
	limit = 200 * 1000

	print "Generating primes"
	p = primes.primes(limit)
	x = [0] * limit

	print "Generating factor counts"
	for pp in p:
		for j in xrange(pp, limit, pp) :
			x[j] += 1

	for i in xrange(2, limit) :
		if all(4 == x[i-j] for j in range(0, 4)) :
			print i-3
			break
Exemple #53
0
def main():
    start = time.perf_counter()
    p = primes.primes(10**5)
    somme = 0

    for i in p:
        test = True
        for n in range(1, 17):
            if pow(10, 10**n, 9*i) == 1:
                test = False
                break
        if test:
            somme += i

    print(somme)
    print('temps d execution', time.perf_counter() - start, 'sec')
Exemple #54
0
def main():
    start = time.perf_counter()
    pri = primes.primes(10**8)
    a = []
    resultat = 1

    for k in pri:
        a.append((k, padic_order(10**8, k)))
    del pri

    for k in a:
        terme = 1 + pow(k[0], 2*k[1], 1000000009)
        resultat = (resultat * terme) % 1000000009

    print(resultat)
    print('temps d execution', time.perf_counter() - start, 'sec')
Exemple #55
0
def main():
    start = time.perf_counter()
    p = primes.primes(5000)
    somme = 0

    for r in range(2, len(p)):
        pr = p[r]
        for q in range(1, r):
            pq = p[q]
            temp = pr*pq
            temp1 = 2*temp - pr - pq
            for p1 in range(q):
                somme += p[p1]*temp1 - temp

    print(somme)
    print('temps d execution', time.perf_counter() - start, 'sec')
Exemple #56
0
def euler_37():
    x = primes.primes(2000000)
    cand = dict.fromkeys(x[4:], 1)
    h = [str(p) for p in x[0:100] if 10 < p < 100]

    for k in remove_candidates(cand, h):
        cand.pop(k)

    left = set(p for p in cand if all(int(y) in x for y in truncate_left(p)))
    right = set(p for p in cand if all(int(y) in x for y in truncate_right(p)))
    #print left
    #print right
    truncatable_prime = left.intersection(right)
    for i, j in enumerate(sorted(truncatable_prime)):
        print "%d %d" % (i, j)
    print sum(truncatable_prime)
Exemple #57
0
def euler47():
    limit = 200 * 1000

    print "Generating primes"
    p = primes.primes(limit)
    x = [0] * limit

    print "Generating factor counts"
    for pp in p:
        for j in xrange(pp, limit, pp):
            x[j] += 1

    for i in xrange(2, limit):
        if all(4 == x[i - j] for j in range(0, 4)):
            print i - 3
            break
Exemple #58
0
def euler_37() :
	x = primes.primes(2000000)
	cand = dict.fromkeys (x[4 : ], 1 )
	h = [ str(p) for p in x[0:100] if 10 < p < 100 ]

	for k in remove_candidates(cand, h) :
		cand.pop(k)

	left  = set( p for p in cand if all(int(y) in x for y in truncate_left(p)) )
	right = set( p for p in cand if all(int(y) in x for y in truncate_right(p)) )
	#print left
	#print right
	truncatable_prime = left.intersection(right)
	for i, j in enumerate(sorted(truncatable_prime)) :
		print "%d %d" % ( i, j )
	print sum(truncatable_prime)
def euler72(limit) :
	# 1 appears in all
	count = limit - 2 + 1
	p = primes.primes(limit + 1)
	p.append(limit + 50)
	p_counter = 0
	next_prime = p[p_counter]
	p25 = p[ : 25]
	#print "Limit: %d Count: %d" % (limit, count)
	g_fn = gcd.gcd
	for r in xrange(2, limit) :
		if r % 1000 == 0 :
			print r, count, "\r",
		leftover = limit%r
		multiples_of_r = (limit - r - leftover) / r
		x, y = 0, 0
		if r == next_prime :
			p_counter += 1
			next_prime = p[p_counter]
			x, y = (r-1), leftover
		else :
			r_temp = r
			rr = range(r)
			for pp in p25 :
				if r_temp % pp == 0 :
					for ccc in xrange(pp, r, pp) :
						rr[ccc] = 0
					while 1 :
						qq, rrr = divmod(r_temp, pp)
						if rrr != 0 : break
						r_temp = qq
					if r_temp == 1 or pp > r_temp : break
			for j in rr :
				if j :
					if g_fn(j, r) == 1 :
						x += 1
						if j <= leftover :
							y += 1
			#for j in range(1,r+1) :
			#	if g_fn(j, r) == 1 :
			#		x += 1
			#		if j <= leftover :
			#			y += 1
			#print r, gcd_range, multiples_of_r, leftover
		print r, (multiples_of_r * x) + y
		count += (multiples_of_r * x) + y
	return count