RNA_data_scaled.columns)] Imp_Genes = pd.DataFrame(columns=Common_data.columns) precise_time = [] knn_time = [] for i in Common_data.columns: print(i) start = tm.time() from principal_vectors import PVComputation n_factors = 50 n_pv = 50 dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation(n_factors=n_factors, n_pv=n_pv, dim_reduction=dim_reduction, dim_reduction_target=dim_reduction_target) pv_FISH_RNA.fit(Common_data.drop(i, axis=1), seqFISH_data_scaled[Common_data.columns].drop(i, axis=1)) S = pv_FISH_RNA.source_components_.T Effective_n_pv = sum(np.diag(pv_FISH_RNA.cosine_similarity_matrix_) > 0.3) S = S[:, 0:Effective_n_pv] Common_data_t = Common_data.drop(i, axis=1).dot(S) FISH_exp_t = seqFISH_data_scaled[Common_data.columns].drop(i, axis=1).dot(S) precise_time.append(tm.time() - start)
RNA_data = datadict['RNA_data'] RNA_data_scaled = datadict['RNA_data_scaled'] del datadict Common_data = RNA_data_scaled[np.intersect1d(osmFISH_data_scaled.columns,RNA_data_scaled.columns)] n_factors = 30 n_pv = 30 n_pv_display = 30 dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation( n_factors = n_factors, n_pv = n_pv, dim_reduction = dim_reduction, dim_reduction_target = dim_reduction_target ) pv_FISH_RNA.fit(Common_data,osmFISH_data_scaled[Common_data.columns]) fig = plt.figure() sns.heatmap(pv_FISH_RNA.initial_cosine_similarity_matrix_[:n_pv_display,:n_pv_display], cmap='seismic_r', center=0, vmax=1., vmin=0) plt.xlabel('osmFISH',fontsize=18, color='black') plt.ylabel('Allen_SSp',fontsize=18, color='black') plt.xticks(np.arange(n_pv_display)+0.5, range(1, n_pv_display+1), fontsize=12) plt.yticks(np.arange(n_pv_display)+0.5, range(1, n_pv_display+1), fontsize=12, rotation='horizontal') plt.gca().set_ylim([n_pv_display,0]) plt.show()
for i in [10,30,50,100,200,500,len(Variance)]: Imp_New_Genes = pd.DataFrame(np.zeros((Starmap_data.shape[0],len(genes_to_impute))),columns=genes_to_impute) if(i>=50): n_factors = 50 n_pv = 50 else: n_factors = i n_pv = i dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation( n_factors = n_factors, n_pv = n_pv, dim_reduction = dim_reduction, dim_reduction_target = dim_reduction_target ) source_data = RNA_data_scaled[Variance.index[0:i]] target_data = Starmap_data_scaled[Variance.index[0:i]] pv_FISH_RNA.fit(source_data,target_data) S = pv_FISH_RNA.source_components_.T Effective_n_pv = sum(np.diag(pv_FISH_RNA.cosine_similarity_matrix_) > 0.3) S = S[:,0:Effective_n_pv] RNA_data_t = source_data.dot(S) FISH_exp_t = target_data.dot(S)