def main(): Get_Program(True) Format() basic_multivector_operations_3D() basic_multivector_operations_2D() xdvi('simple_test_latex.tex') return
def main(): Get_Program() Format() Maxwells_Equations_in_Geometric_Calculus() Dirac_Equation_in_Geometric_Calculus() Lorentz_Tranformation_in_Geometric_Algebra() xdvi() return
def main(): Get_Program() Format() basic_multivector_operations_3D() basic_multivector_operations_2D() basic_multivector_operations_2D_orthogonal() check_generalized_BAC_CAB_formulas() rounding_numerical_components() derivatives_in_rectangular_coordinates() derivatives_in_spherical_coordinates() #noneuclidian_distance_calculation() conformal_representations_of_circles_lines_spheres_and_planes() properties_of_geometric_objects() extracting_vectors_from_conformal_2_blade() reciprocal_frame_test() xdvi() return
def main(): Get_Program() Format() derivatives_in_spherical_coordinates() xdvi() return
def main(): Format() (ex, ey, ez) = MV.setup('e*x|y|z') A = MV('A', 'mv') print(r'\bm{A} =', A) A.Fmt(2, r'\bm{A}') A.Fmt(3, r'\bm{A}') X = (x, y, z) = symbols('x y z') (ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=X) f = MV('f', 'scalar', fct=True) A = MV('A', 'vector', fct=True) B = MV('B', 'grade2', fct=True) print(r'\bm{A} =', A) print(r'\bm{B} =', B) print('grad*f =', grad * f) print(r'grad|\bm{A} =', grad | A) print(r'grad*\bm{A} =', grad * A) print(r'-I*(grad^\bm{A}) =', -MV.I * (grad ^ A)) print(r'grad*\bm{B} =', grad * B) print(r'grad^\bm{B} =', grad ^ B) print(r'grad|\bm{B} =', grad | B) (a, b, c, d) = MV.setup('a b c d') print('g_{ij} =', MV.metric) print('\\bm{a|(b*c)} =', a | (b * c)) print('\\bm{a|(b^c)} =', a | (b ^ c)) print('\\bm{a|(b^c^d)} =', a | (b ^ c ^ d)) print('\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =', (a | (b ^ c)) + (c | (a ^ b)) + (b | (c ^ a))) print('\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =', a * (b ^ c) - b * (a ^ c) + c * (a ^ b)) print( '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =', a * (b ^ c ^ d) - b * (a ^ c ^ d) + c * (a ^ b ^ d) - d * (a ^ b ^ c)) print('\\bm{(a^b)|(c^d)} =', (a ^ b) | (c ^ d)) print('\\bm{((a^b)|c)|d} =', ((a ^ b) | c) | d) print('\\bm{(a^b)\\times (c^d)} =', Com(a ^ b, c ^ d)) metric = '1 # #,'+ \ '# 1 #,'+ \ '# # 1' (e1, e2, e3) = MV.setup('e1 e2 e3', metric) E = e1 ^ e2 ^ e3 Esq = (E * E).scalar() print('E =', E) print('%E^{2} =', Esq) Esq_inv = 1 / Esq E1 = (e2 ^ e3) * E E2 = (-1) * (e1 ^ e3) * E E3 = (e1 ^ e2) * E print('E1 = (e2^e3)*E =', E1) print('E2 =-(e1^e3)*E =', E2) print('E3 = (e1^e2)*E =', E3) print('E1|e2 =', (E1 | e2).expand()) print('E1|e3 =', (E1 | e3).expand()) print('E2|e1 =', (E2 | e1).expand()) print('E2|e3 =', (E2 | e3).expand()) print('E3|e1 =', (E3 | e1).expand()) print('E3|e2 =', (E3 | e2).expand()) w = ((E1 | e1).expand()).scalar() Esq = expand(Esq) print('%(E1\\cdot e1)/E^{2} =', simplify(w / Esq)) w = ((E2 | e2).expand()).scalar() print('%(E2\\cdot e2)/E^{2} =', simplify(w / Esq)) w = ((E3 | e3).expand()).scalar() print('%(E3\\cdot e3)/E^{2} =', simplify(w / Esq)) X = (r, th, phi) = symbols('r theta phi') curv = [[r * cos(phi) * sin(th), r * sin(phi) * sin(th), r * cos(th)], [1, r, r * sin(th)]] (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv) f = MV('f', 'scalar', fct=True) A = MV('A', 'vector', fct=True) B = MV('B', 'grade2', fct=True) print('A =', A) print('B =', B) print('grad*f =', grad * f) print('grad|A =', grad | A) print('-I*(grad^A) =', -MV.I * (grad ^ A)) print('grad^B =', grad ^ B) vars = symbols('t x y z') (g0, g1, g2, g3, grad) = MV.setup('gamma*t|x|y|z', metric='[1,-1,-1,-1]', coords=vars) I = MV.I B = MV('B', 'vector', fct=True) E = MV('E', 'vector', fct=True) B.set_coef(1, 0, 0) E.set_coef(1, 0, 0) B *= g0 E *= g0 J = MV('J', 'vector', fct=True) F = E + I * B print('B = \\bm{B\\gamma_{t}} =', B) print('E = \\bm{E\\gamma_{t}} =', E) print('F = E+IB =', F) print('J =', J) gradF = grad * F gradF.Fmt(3, 'grad*F') print('grad*F = J') (gradF.grade(1) - J).Fmt(3, '%\\grade{\\nabla F}_{1} -J = 0') (gradF.grade(3)).Fmt(3, '%\\grade{\\nabla F}_{3} = 0') (alpha, beta, gamma) = symbols('alpha beta gamma') (x, t, xp, tp) = symbols("x t x' t'") (g0, g1) = MV.setup('gamma*t|x', metric='[1,-1]') R = cosh(alpha / 2) + sinh(alpha / 2) * (g0 ^ g1) X = t * g0 + x * g1 Xp = tp * g0 + xp * g1 print('R =', R) print( r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}" ) Xpp = R * Xp * R.rev() Xpp = Xpp.collect() Xpp = Xpp.subs({ 2 * sinh(alpha / 2) * cosh(alpha / 2): sinh(alpha), sinh(alpha / 2)**2 + cosh(alpha / 2)**2: cosh(alpha) }) print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp) Xpp = Xpp.subs({sinh(alpha): gamma * beta, cosh(alpha): gamma}) print(r'%\f{\sinh}{\alpha} = \gamma\beta') print(r'%\f{\cosh}{\alpha} = \gamma') print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp.collect()) vars = symbols('t x y z') (g0, g1, g2, g3, grad) = MV.setup('gamma*t|x|y|z', metric='[1,-1,-1,-1]', coords=vars) I = MV.I (m, e) = symbols('m e') psi = MV('psi', 'spinor', fct=True) A = MV('A', 'vector', fct=True) sig_z = g3 * g0 print('\\bm{A} =', A) print('\\bm{\\psi} =', psi) dirac_eq = (grad * psi) * I * sig_z - e * A * psi - m * psi * g0 dirac_eq.simplify() dirac_eq.Fmt( 3, r'\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0' ) xdvi() return
def main(): Format() (ex,ey,ez) = MV.setup('e*x|y|z') A = MV('A','mv') print r'\bm{A} =',A A.Fmt(2,r'\bm{A}') A.Fmt(3,r'\bm{A}') X = (x,y,z) = symbols('x y z') (ex,ey,ez,grad) = MV.setup('e_x e_y e_z',metric='[1,1,1]',coords=X) f = MV('f','scalar',fct=True) A = MV('A','vector',fct=True) B = MV('B','grade2',fct=True) print r'\bm{A} =',A print r'\bm{B} =',B print 'grad*f =',grad*f print r'grad|\bm{A} =',grad|A print r'grad*\bm{A} =',grad*A print r'-I*(grad^\bm{A}) =',-MV.I*(grad^A) print r'grad*\bm{B} =',grad*B print r'grad^\bm{B} =',grad^B print r'grad|\bm{B} =',grad|B (a,b,c,d) = MV.setup('a b c d') print 'g_{ij} =',MV.metric print '\\bm{a|(b*c)} =',a|(b*c) print '\\bm{a|(b^c)} =',a|(b^c) print '\\bm{a|(b^c^d)} =',a|(b^c^d) print '\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =',(a|(b^c))+(c|(a^b))+(b|(c^a)) print '\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =',a*(b^c)-b*(a^c)+c*(a^b) print '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) print '\\bm{(a^b)|(c^d)} =',(a^b)|(c^d) print '\\bm{((a^b)|c)|d} =',((a^b)|c)|d print '\\bm{(a^b)\\times (c^d)} =',Com(a^b,c^d) metric = '1 # #,'+ \ '# 1 #,'+ \ '# # 1' (e1,e2,e3) = MV.setup('e1 e2 e3',metric) E = e1^e2^e3 Esq = (E*E).scalar() print 'E =',E print '%E^{2} =',Esq Esq_inv = 1/Esq E1 = (e2^e3)*E E2 = (-1)*(e1^e3)*E E3 = (e1^e2)*E print 'E1 = (e2^e3)*E =',E1 print 'E2 =-(e1^e3)*E =',E2 print 'E3 = (e1^e2)*E =',E3 print 'E1|e2 =',(E1|e2).expand() print 'E1|e3 =',(E1|e3).expand() print 'E2|e1 =',(E2|e1).expand() print 'E2|e3 =',(E2|e3).expand() print 'E3|e1 =',(E3|e1).expand() print 'E3|e2 =',(E3|e2).expand() w = ((E1|e1).expand()).scalar() Esq = expand(Esq) print '%(E1\\cdot e1)/E^{2} =',simplify(w/Esq) w = ((E2|e2).expand()).scalar() print '%(E2\\cdot e2)/E^{2} =',simplify(w/Esq) w = ((E3|e3).expand()).scalar() print '%(E3\\cdot e3)/E^{2} =',simplify(w/Esq) X = (r,th,phi) = symbols('r theta phi') curv = [[r*cos(phi)*sin(th),r*sin(phi)*sin(th),r*cos(th)],[1,r,r*sin(th)]] (er,eth,ephi,grad) = MV.setup('e_r e_theta e_phi',metric='[1,1,1]',coords=X,curv=curv) f = MV('f','scalar',fct=True) A = MV('A','vector',fct=True) B = MV('B','grade2',fct=True) print 'A =',A print 'B =',B print 'grad*f =',grad*f print 'grad|A =',grad|A print '-I*(grad^A) =',-MV.I*(grad^A) print 'grad^B =',grad^B vars = symbols('t x y z') (g0,g1,g2,g3,grad) = MV.setup('gamma*t|x|y|z',metric='[1,-1,-1,-1]',coords=vars) I = MV.I B = MV('B','vector',fct=True) E = MV('E','vector',fct=True) B.set_coef(1,0,0) E.set_coef(1,0,0) B *= g0 E *= g0 J = MV('J','vector',fct=True) F = E+I*B print 'B = \\bm{B\\gamma_{t}} =',B print 'E = \\bm{E\\gamma_{t}} =',E print 'F = E+IB =',F print 'J =',J gradF = grad*F gradF.Fmt(3,'grad*F') print 'grad*F = J' (gradF.grade(1)-J).Fmt(3,'%\\grade{\\nabla F}_{1} -J = 0') (gradF.grade(3)).Fmt(3,'%\\grade{\\nabla F}_{3} = 0') (alpha,beta,gamma) = symbols('alpha beta gamma') (x,t,xp,tp) = symbols("x t x' t'") (g0,g1) = MV.setup('gamma*t|x',metric='[1,-1]') R = cosh(alpha/2)+sinh(alpha/2)*(g0^g1) X = t*g0+x*g1 Xp = tp*g0+xp*g1 print 'R =',R print r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}" Xpp = R*Xp*R.rev() Xpp = Xpp.collect() Xpp = Xpp.subs({2*sinh(alpha/2)*cosh(alpha/2):sinh(alpha),sinh(alpha/2)**2+cosh(alpha/2)**2:cosh(alpha)}) print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp Xpp = Xpp.subs({sinh(alpha):gamma*beta,cosh(alpha):gamma}) print r'%\f{\sinh}{\alpha} = \gamma\beta' print r'%\f{\cosh}{\alpha} = \gamma' print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp.collect() vars = symbols('t x y z') (g0,g1,g2,g3,grad) = MV.setup('gamma*t|x|y|z',metric='[1,-1,-1,-1]',coords=vars) I = MV.I (m,e) = symbols('m e') psi = MV('psi','spinor',fct=True) A = MV('A','vector',fct=True) sig_z = g3*g0 print '\\bm{A} =',A print '\\bm{\\psi} =',psi dirac_eq = (grad*psi)*I*sig_z-e*A*psi-m*psi*g0 dirac_eq.simplify() dirac_eq.Fmt(3,r'\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0') xdvi() return