def main():
    Get_Program(True)
    Format()

    basic_multivector_operations_3D()
    basic_multivector_operations_2D()

    xdvi('simple_test_latex.tex')
    return
def main():
    Get_Program()
    Format()

    Maxwells_Equations_in_Geometric_Calculus()
    Dirac_Equation_in_Geometric_Calculus()
    Lorentz_Tranformation_in_Geometric_Algebra()

    xdvi()
    return
def main():
    Get_Program()
    Format()

    Maxwells_Equations_in_Geometric_Calculus()
    Dirac_Equation_in_Geometric_Calculus()
    Lorentz_Tranformation_in_Geometric_Algebra()

    xdvi()
    return
Exemple #4
0
def main():
    Get_Program()

    Format()
    basic_multivector_operations_3D()
    basic_multivector_operations_2D()
    basic_multivector_operations_2D_orthogonal()
    check_generalized_BAC_CAB_formulas()
    rounding_numerical_components()
    derivatives_in_rectangular_coordinates()
    derivatives_in_spherical_coordinates()
    #noneuclidian_distance_calculation()
    conformal_representations_of_circles_lines_spheres_and_planes()
    properties_of_geometric_objects()
    extracting_vectors_from_conformal_2_blade()
    reciprocal_frame_test()

    xdvi()
    return
Exemple #5
0
def main():
    Get_Program()

    Format()
    basic_multivector_operations_3D()
    basic_multivector_operations_2D()
    basic_multivector_operations_2D_orthogonal()
    check_generalized_BAC_CAB_formulas()
    rounding_numerical_components()
    derivatives_in_rectangular_coordinates()
    derivatives_in_spherical_coordinates()
    #noneuclidian_distance_calculation()
    conformal_representations_of_circles_lines_spheres_and_planes()
    properties_of_geometric_objects()
    extracting_vectors_from_conformal_2_blade()
    reciprocal_frame_test()

    xdvi()
    return
Exemple #6
0
def main():
    Get_Program()
    Format()
    derivatives_in_spherical_coordinates()
    xdvi()
    return
Exemple #7
0
def main():
    Get_Program()
    Format()
    derivatives_in_spherical_coordinates()
    xdvi()
    return
def main():
    Format()

    (ex, ey, ez) = MV.setup('e*x|y|z')
    A = MV('A', 'mv')
    print(r'\bm{A} =', A)
    A.Fmt(2, r'\bm{A}')
    A.Fmt(3, r'\bm{A}')

    X = (x, y, z) = symbols('x y z')
    (ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=X)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print(r'\bm{A} =', A)
    print(r'\bm{B} =', B)

    print('grad*f =', grad * f)
    print(r'grad|\bm{A} =', grad | A)
    print(r'grad*\bm{A} =', grad * A)

    print(r'-I*(grad^\bm{A}) =', -MV.I * (grad ^ A))
    print(r'grad*\bm{B} =', grad * B)
    print(r'grad^\bm{B} =', grad ^ B)
    print(r'grad|\bm{B} =', grad | B)

    (a, b, c, d) = MV.setup('a b c d')

    print('g_{ij} =', MV.metric)

    print('\\bm{a|(b*c)} =', a | (b * c))
    print('\\bm{a|(b^c)} =', a | (b ^ c))
    print('\\bm{a|(b^c^d)} =', a | (b ^ c ^ d))
    print('\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =',
          (a | (b ^ c)) + (c | (a ^ b)) + (b | (c ^ a)))
    print('\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =',
          a * (b ^ c) - b * (a ^ c) + c * (a ^ b))
    print(
        '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =',
        a * (b ^ c ^ d) - b * (a ^ c ^ d) + c * (a ^ b ^ d) - d * (a ^ b ^ c))
    print('\\bm{(a^b)|(c^d)} =', (a ^ b) | (c ^ d))
    print('\\bm{((a^b)|c)|d} =', ((a ^ b) | c) | d)
    print('\\bm{(a^b)\\times (c^d)} =', Com(a ^ b, c ^ d))

    metric = '1 # #,'+ \
             '# 1 #,'+ \
             '# # 1'

    (e1, e2, e3) = MV.setup('e1 e2 e3', metric)

    E = e1 ^ e2 ^ e3
    Esq = (E * E).scalar()
    print('E =', E)
    print('%E^{2} =', Esq)
    Esq_inv = 1 / Esq

    E1 = (e2 ^ e3) * E
    E2 = (-1) * (e1 ^ e3) * E
    E3 = (e1 ^ e2) * E

    print('E1 = (e2^e3)*E =', E1)
    print('E2 =-(e1^e3)*E =', E2)
    print('E3 = (e1^e2)*E =', E3)

    print('E1|e2 =', (E1 | e2).expand())
    print('E1|e3 =', (E1 | e3).expand())
    print('E2|e1 =', (E2 | e1).expand())
    print('E2|e3 =', (E2 | e3).expand())
    print('E3|e1 =', (E3 | e1).expand())
    print('E3|e2 =', (E3 | e2).expand())
    w = ((E1 | e1).expand()).scalar()
    Esq = expand(Esq)
    print('%(E1\\cdot e1)/E^{2} =', simplify(w / Esq))
    w = ((E2 | e2).expand()).scalar()
    print('%(E2\\cdot e2)/E^{2} =', simplify(w / Esq))
    w = ((E3 | e3).expand()).scalar()
    print('%(E3\\cdot e3)/E^{2} =', simplify(w / Esq))

    X = (r, th, phi) = symbols('r theta phi')
    curv = [[r * cos(phi) * sin(th), r * sin(phi) * sin(th), r * cos(th)],
            [1, r, r * sin(th)]]
    (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi',
                                     metric='[1,1,1]',
                                     coords=X,
                                     curv=curv)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print('A =', A)
    print('B =', B)

    print('grad*f =', grad * f)
    print('grad|A =', grad | A)
    print('-I*(grad^A) =', -MV.I * (grad ^ A))
    print('grad^B =', grad ^ B)

    vars = symbols('t x y z')
    (g0, g1, g2, g3, grad) = MV.setup('gamma*t|x|y|z',
                                      metric='[1,-1,-1,-1]',
                                      coords=vars)
    I = MV.I

    B = MV('B', 'vector', fct=True)
    E = MV('E', 'vector', fct=True)
    B.set_coef(1, 0, 0)
    E.set_coef(1, 0, 0)
    B *= g0
    E *= g0
    J = MV('J', 'vector', fct=True)
    F = E + I * B

    print('B = \\bm{B\\gamma_{t}} =', B)
    print('E = \\bm{E\\gamma_{t}} =', E)
    print('F = E+IB =', F)
    print('J =', J)
    gradF = grad * F
    gradF.Fmt(3, 'grad*F')

    print('grad*F = J')
    (gradF.grade(1) - J).Fmt(3, '%\\grade{\\nabla F}_{1} -J = 0')
    (gradF.grade(3)).Fmt(3, '%\\grade{\\nabla F}_{3} = 0')

    (alpha, beta, gamma) = symbols('alpha beta gamma')

    (x, t, xp, tp) = symbols("x t x' t'")
    (g0, g1) = MV.setup('gamma*t|x', metric='[1,-1]')

    R = cosh(alpha / 2) + sinh(alpha / 2) * (g0 ^ g1)
    X = t * g0 + x * g1
    Xp = tp * g0 + xp * g1
    print('R =', R)

    print(
        r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}"
    )

    Xpp = R * Xp * R.rev()
    Xpp = Xpp.collect()
    Xpp = Xpp.subs({
        2 * sinh(alpha / 2) * cosh(alpha / 2): sinh(alpha),
        sinh(alpha / 2)**2 + cosh(alpha / 2)**2: cosh(alpha)
    })
    print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp)
    Xpp = Xpp.subs({sinh(alpha): gamma * beta, cosh(alpha): gamma})

    print(r'%\f{\sinh}{\alpha} = \gamma\beta')
    print(r'%\f{\cosh}{\alpha} = \gamma')

    print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp.collect())

    vars = symbols('t x y z')
    (g0, g1, g2, g3, grad) = MV.setup('gamma*t|x|y|z',
                                      metric='[1,-1,-1,-1]',
                                      coords=vars)
    I = MV.I
    (m, e) = symbols('m e')

    psi = MV('psi', 'spinor', fct=True)
    A = MV('A', 'vector', fct=True)
    sig_z = g3 * g0
    print('\\bm{A} =', A)
    print('\\bm{\\psi} =', psi)

    dirac_eq = (grad * psi) * I * sig_z - e * A * psi - m * psi * g0
    dirac_eq.simplify()

    dirac_eq.Fmt(
        3,
        r'\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0'
    )

    xdvi()
    return
Exemple #9
0
def main():
    Format()

    (ex,ey,ez) = MV.setup('e*x|y|z')
    A = MV('A','mv')
    print r'\bm{A} =',A
    A.Fmt(2,r'\bm{A}')
    A.Fmt(3,r'\bm{A}')

    X = (x,y,z) = symbols('x y z')
    (ex,ey,ez,grad) = MV.setup('e_x e_y e_z',metric='[1,1,1]',coords=X)

    f = MV('f','scalar',fct=True)
    A = MV('A','vector',fct=True)
    B = MV('B','grade2',fct=True)

    print r'\bm{A} =',A
    print r'\bm{B} =',B

    print 'grad*f =',grad*f
    print r'grad|\bm{A} =',grad|A
    print r'grad*\bm{A} =',grad*A

    print r'-I*(grad^\bm{A}) =',-MV.I*(grad^A)
    print r'grad*\bm{B} =',grad*B
    print r'grad^\bm{B} =',grad^B
    print r'grad|\bm{B} =',grad|B

    (a,b,c,d) = MV.setup('a b c d')

    print 'g_{ij} =',MV.metric

    print '\\bm{a|(b*c)} =',a|(b*c)
    print '\\bm{a|(b^c)} =',a|(b^c)
    print '\\bm{a|(b^c^d)} =',a|(b^c^d)
    print '\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =',(a|(b^c))+(c|(a^b))+(b|(c^a))
    print '\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =',a*(b^c)-b*(a^c)+c*(a^b)
    print '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =',a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)
    print '\\bm{(a^b)|(c^d)} =',(a^b)|(c^d)
    print '\\bm{((a^b)|c)|d} =',((a^b)|c)|d
    print '\\bm{(a^b)\\times (c^d)} =',Com(a^b,c^d)

    metric = '1 # #,'+ \
             '# 1 #,'+ \
             '# # 1'

    (e1,e2,e3) = MV.setup('e1 e2 e3',metric)

    E = e1^e2^e3
    Esq = (E*E).scalar()
    print 'E =',E
    print '%E^{2} =',Esq
    Esq_inv = 1/Esq

    E1 = (e2^e3)*E
    E2 = (-1)*(e1^e3)*E
    E3 = (e1^e2)*E

    print 'E1 = (e2^e3)*E =',E1
    print 'E2 =-(e1^e3)*E =',E2
    print 'E3 = (e1^e2)*E =',E3

    print 'E1|e2 =',(E1|e2).expand()
    print 'E1|e3 =',(E1|e3).expand()
    print 'E2|e1 =',(E2|e1).expand()
    print 'E2|e3 =',(E2|e3).expand()
    print 'E3|e1 =',(E3|e1).expand()
    print 'E3|e2 =',(E3|e2).expand()
    w = ((E1|e1).expand()).scalar()
    Esq = expand(Esq)
    print '%(E1\\cdot e1)/E^{2} =',simplify(w/Esq)
    w = ((E2|e2).expand()).scalar()
    print '%(E2\\cdot e2)/E^{2} =',simplify(w/Esq)
    w = ((E3|e3).expand()).scalar()
    print '%(E3\\cdot e3)/E^{2} =',simplify(w/Esq)


    X = (r,th,phi) = symbols('r theta phi')
    curv = [[r*cos(phi)*sin(th),r*sin(phi)*sin(th),r*cos(th)],[1,r,r*sin(th)]]
    (er,eth,ephi,grad) = MV.setup('e_r e_theta e_phi',metric='[1,1,1]',coords=X,curv=curv)

    f = MV('f','scalar',fct=True)
    A = MV('A','vector',fct=True)
    B = MV('B','grade2',fct=True)

    print 'A =',A
    print 'B =',B

    print 'grad*f =',grad*f
    print 'grad|A =',grad|A
    print '-I*(grad^A) =',-MV.I*(grad^A)
    print 'grad^B =',grad^B

    vars = symbols('t x y z')
    (g0,g1,g2,g3,grad) = MV.setup('gamma*t|x|y|z',metric='[1,-1,-1,-1]',coords=vars)
    I = MV.I

    B = MV('B','vector',fct=True)
    E = MV('E','vector',fct=True)
    B.set_coef(1,0,0)
    E.set_coef(1,0,0)
    B *= g0
    E *= g0
    J = MV('J','vector',fct=True)
    F = E+I*B

    print 'B = \\bm{B\\gamma_{t}} =',B
    print 'E = \\bm{E\\gamma_{t}} =',E
    print 'F = E+IB =',F
    print 'J =',J
    gradF = grad*F
    gradF.Fmt(3,'grad*F')

    print 'grad*F = J'
    (gradF.grade(1)-J).Fmt(3,'%\\grade{\\nabla F}_{1} -J = 0')
    (gradF.grade(3)).Fmt(3,'%\\grade{\\nabla F}_{3} = 0')

    (alpha,beta,gamma) = symbols('alpha beta gamma')

    (x,t,xp,tp) = symbols("x t x' t'")
    (g0,g1) = MV.setup('gamma*t|x',metric='[1,-1]')

    R = cosh(alpha/2)+sinh(alpha/2)*(g0^g1)
    X = t*g0+x*g1
    Xp = tp*g0+xp*g1
    print 'R =',R

    print r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}"

    Xpp = R*Xp*R.rev()
    Xpp = Xpp.collect()
    Xpp = Xpp.subs({2*sinh(alpha/2)*cosh(alpha/2):sinh(alpha),sinh(alpha/2)**2+cosh(alpha/2)**2:cosh(alpha)})
    print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp
    Xpp = Xpp.subs({sinh(alpha):gamma*beta,cosh(alpha):gamma})

    print r'%\f{\sinh}{\alpha} = \gamma\beta'
    print r'%\f{\cosh}{\alpha} = \gamma'

    print r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =",Xpp.collect()

    vars = symbols('t x y z')
    (g0,g1,g2,g3,grad) = MV.setup('gamma*t|x|y|z',metric='[1,-1,-1,-1]',coords=vars)
    I = MV.I
    (m,e) = symbols('m e')

    psi = MV('psi','spinor',fct=True)
    A = MV('A','vector',fct=True)
    sig_z = g3*g0
    print '\\bm{A} =',A
    print '\\bm{\\psi} =',psi

    dirac_eq = (grad*psi)*I*sig_z-e*A*psi-m*psi*g0
    dirac_eq.simplify()

    dirac_eq.Fmt(3,r'\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0')

    xdvi()
    return