Exemple #1
0
class S3FD(nn.Module):
    """Single Shot Multibox Architecture
    The network is composed of a base VGG network followed by the
    added multibox conv layers.  Each multibox layer branches into
        1) conv2d for class conf scores
        2) conv2d for localization predictions
        3) associated priorbox layer to produce default bounding
           boxes specific to the layer's feature map size.
    See: https://arxiv.org/pdf/1512.02325.pdf for more details.

    Args:
        phase: (string) Can be "test" or "train"
        size: input image size
        base: VGG16 layers for input, size of either 300 or 500
        extras: extra layers that feed to multibox loc and conf layers
        head: "multibox head" consists of loc and conf conv layers
    """
    def __init__(self, phase, base, extras, head, num_classes):
        super(S3FD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        '''
        self.priorbox = PriorBox(size,cfg)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        '''
        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm3_3 = L2Norm(256, 10)
        self.L2Norm4_3 = L2Norm(512, 8)
        self.L2Norm5_3 = L2Norm(512, 5)

        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])
        self.priorbox = PriorBox(cfg)
        with torch.no_grad():
            self.priors = self.priorbox.forward()
        # if self.phase == 'test':
        #     self.softmax = nn.Softmax(dim=-1)
        #     self.detect = Detect(cfg)

    def forward(self, x):
        """Applies network layers and ops on input image(s) x.

        Args:
            x: input image or batch of images. Shape: [batch,3,300,300].

        Return:
            Depending on phase:
            test:
                Variable(tensor) of output class label predictions,
                confidence score, and corresponding location predictions for
                each object detected. Shape: [batch,topk,7]

            train:
                list of concat outputs from:
                    1: confidence layers, Shape: [batch*num_priors,num_classes]
                    2: localization layers, Shape: [batch,num_priors*4]
                    3: priorbox layers, Shape: [2,num_priors*4]
        """
        #size = x.size()[2:]
        sources = list()
        loc = list()
        conf = list()

        # apply vgg up to conv4_3 relu
        for k in range(16):
            x = self.vgg[k](x)

        s = self.L2Norm3_3(x)
        sources.append(s)
        #print('conv3:',s.size())
        # apply vgg up to fc7
        for k in range(16, 23):
            x = self.vgg[k](x)

        s = self.L2Norm4_3(x)
        sources.append(s)
        #print('conv4:',s.size())
        for k in range(23, 30):
            x = self.vgg[k](x)

        s = self.L2Norm5_3(x)
        sources.append(s)

        for k in range(30, len(self.vgg)):
            x = self.vgg[k](x)
        sources.append(x)

        # apply extra layers and cache source layer outputs
        for k, v in enumerate(self.extras):
            x = F.relu(v(x), inplace=True)
            if k % 2 == 1:
                sources.append(x)

        # apply multibox head to source layers

        loc_x = self.loc[0](sources[0])
        conf_x = self.conf[0](sources[0])

        max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
        conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)

        loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
        conf.append(conf_x.permute(0, 2, 3, 1).contiguous())

        for i in range(1, len(sources)):
            x = sources[i]
            conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
            loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())
        '''
        for (x, l, c) in zip(sources, self.loc, self.conf):
            loc.append(l(x).permute(0, 2, 3, 1).contiguous())
            conf.append(c(x).permute(0, 2, 3, 1).contiguous())
        '''

        # features_maps = []
        # for i in range(len(loc)):
        #     feat = []
        #     feat += [loc[i].size(1), loc[i].size(2)]
        #     features_maps += [feat]
        #     print(i,loc[i].size(1), loc[i].size(2))

        #Variable(self.priorbox.forward(), volatile=True)

        loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
        conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)

        # if self.phase == 'test':
        #     output = self.detect(
        #         loc.view(loc.size(0), -1, 4),
        #         self.softmax(conf.view(conf.size(0), -1,self.num_classes)),
        #         self.priors)

        # else:
        #     output = (
        #         loc.view(loc.size(0), -1, 4),
        #         conf.view(conf.size(0), -1,self.num_classes),
        #         self.priors
        #     )
        output = (loc.view(loc.size(0), -1,
                           4), conf.view(conf.size(0), -1,
                                         self.num_classes), self.priors)
        return output
Exemple #2
0
class ASSD_ResNet101(nn.Module):
    def __init__(self, num_classes, num_blocks, top_k, conf_thresh, nms_thresh,
                 variance):
        super(ASSD_ResNet101, self).__init__()
        self.num_classes = num_classes
        ############################################################################################
        self.inplanes = 64
        layers = [3, 4, 23, 3]
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(Bottleneck, 64, layers[0])
        self.layer2 = self._make_layer(Bottleneck, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(Bottleneck, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(Bottleneck, 512, layers[3], stride=2)
        #self.L2Norm = L2Norm(n_channels=512, scale=20)
        self.extra_layers = nn.ModuleList(
            add_extras(layer_cfg['extra'], batch_norm=True))
        self.conf_layers = nn.ModuleList(
            build_conf(layer_cfg['pred'], num_blocks, num_classes))
        self.locs_layers = nn.ModuleList(
            build_locs(layer_cfg['pred'], num_blocks))
        self.prior_boxes = PriorBox()
        self.prior_boxes = self.prior_boxes.forward()

        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.prior_boxes = self.prior_boxes.to(device)

        self.fusion_layers = nn.ModuleList(fusionModule())
        self.fusion_bn = nn.BatchNorm2d(768)  #256*3
        self.fusion_conv = nn.Conv2d(768, 512, kernel_size=1)

        self.att_layers = nn.ModuleList(make_attention())

        self.softmax = nn.Softmax(dim=1)
        self.detect = Detect(num_classes=num_classes,
                             top_k=top_k,
                             conf_thresh=conf_thresh,
                             nms_thresh=nms_thresh,
                             variance=variance)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x, phase=None):
        feat = []
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)  #(2L, 256L, 129L, 129L)
        x = self.layer2(x)  #(2L, 512L, 65L, 65L)
        feat += [x]
        feat0 = x
        x = self.layer3(x)  #(2L, 1024L, 33L, 33L)
        feat += [x]
        feat1 = x
        x = self.layer4(x)
        feat += [x]
        feat2 = x
        for k, v in enumerate(self.extra_layers):
            x = v(x)
            if k in [5, 11, 17, 23]:
                feat += [x]

        ########## fusion #################################################
        feat0 = self.fusion_layers[0](feat0)
        feat1 = F.upsample_bilinear(self.fusion_layers[1](feat1),
                                    size=(65, 65))
        feat2 = F.upsample_bilinear(self.fusion_layers[2](feat2),
                                    size=(65, 65))
        feat[0] = F.relu(
            self.fusion_conv(
                self.fusion_bn(torch.cat([feat0, feat1, feat2], dim=1))))
        ##################################################################
        feat_new = []
        for (x, l) in zip(feat, self.att_layers):
            feat_new.append(l(x))
        ########## PreEnd #################################################
        locs = []
        conf = []
        for (x, l, c) in zip(feat_new, self.locs_layers, self.conf_layers):
            locs += [l(x).permute(0, 2, 3, 1).contiguous()]
            conf += [c(x).permute(0, 2, 3, 1).contiguous()]

        locs = torch.cat([o.view(o.size(0), -1) for o in locs], dim=1)
        conf = torch.cat([o.view(o.size(0), -1) for o in conf], dim=1)

        if phase == 'test':
            output = self.detect(locs.view(locs.size(0), -1, 4),
                                 self.softmax(conf.view(-1, self.num_classes)),
                                 self.prior_boxes.type(type(x.data)))
        else:
            output = (locs.view(locs.size(0), -1, 4),
                      conf.view(conf.size(0), -1,
                                self.num_classes), self.prior_boxes)
        return output
class HeadDetect(object):
    def __init__(self,args):
        if args.ctx and torch.cuda.is_available():
            self.use_cuda = True
        else:
            self.use_cuda = False
        if self.use_cuda:
            torch.set_default_tensor_type('torch.cuda.FloatTensor')
        else:
            torch.set_default_tensor_type('torch.FloatTensor')
        self.loadmodel(args.headmodelpath)
        self.threshold = args.conf_thresh
        self.img_dir = args.img_dir
        
        self.detect = Detect(cfg)
        self.Prior = PriorBox(cfg)
        with torch.no_grad():
            self.priors =  self.Prior.forward()

    def loadmodel(self,modelpath):
        if self.use_cuda:
            device = 'cuda'
        else:
            device = 'cpu'
        # self.net = build_s3fd('test', cfg.NUM_CLASSES)
        self.net = S3FD(cfg.NUM_CLASSES)
        self.net.load_state_dict(torch.load(modelpath,map_location=device))
        self.net.eval()
        # print(self.net)
        if self.use_cuda:
            self.net.cuda()
            cudnn.benckmark = True
    def propress(self,img):
        rgb_mean = np.array([123.,117.,104.])[np.newaxis, np.newaxis,:].astype('float32')
        img = cv2.resize(img,(cfg.resize_width,cfg.resize_height))
        img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
        img = img.astype('float32')
        img -= rgb_mean
        #img = img[:,:,::-1]
        img = np.transpose(img,(2,0,1))
        return img
    def xyxy2xywh(self,bbox_score):
        bboxes = bbox_score[0]
        bbox = bboxes[0] 
        score = bboxes[1]
        bbox[:,2] = bbox[:,2] -bbox[:,0] 
        bbox[:,3] = bbox[:,3] -bbox[:,1]  
        bbox_out=[]
        scores = []
        for j in range(bbox.shape[0]):
            dets = bbox[j] 
            sc = score[j]
            min_re = min(dets[2],dets[3])
            if min_re < 16:
                thresh = 0.2
            else:
                thresh = 0.8
            if sc >= thresh:
                bbox_out.append(dets)
                scores.append(sc)
        return np.array(bbox_out),np.array(scores)
    def nms_filter(self,bboxes,scale):
        boxes = bboxes[0][0] * scale
        scores = bboxes[0][1]
        ids, count = nms_py(boxes, scores, 0.3,1000)
        boxes = boxes[ids[:count]]
        scores = scores[ids[:count]]
        return [[boxes,scores]]
    def inference_img(self,imgorg):
        t1 = time.time()
        imgh,imgw = imgorg.shape[:2]
        scale = np.array([imgw,imgh,imgw,imgh])
        scale = np.expand_dims(scale,0)
        img = self.propress(imgorg.copy())
        bt_img = Variable(torch.from_numpy(img).unsqueeze(0))
        if self.use_cuda:
            bt_img = bt_img.cuda()
        output = self.net(bt_img)
        t2 = time.time()
        with torch.no_grad():
            bboxes = self.detect(output[0],output[1],self.priors)
        t3 = time.time()
        bboxes = self.nms_filter(bboxes,scale)
        print('consuming:',t2-t1,t3-t2)
        #showimg = self.label_show(bboxes,imgorg)
        bbox = []
        score = []
        if len(bboxes)>0:
            bbox,score = self.xyxy2xywh(bboxes)
        # showimg = self.label_show(bbox,score,imgorg)
        return bbox,score
        # return showimg,bbox
    def label_show(self,rectangles,scores,img):
        # imgh,imgw,_ = img.shape
        # scale = np.array([imgw,imgh,imgw,imgh])
        for j in range(rectangles.shape[0]):
            dets = rectangles[j]
            score = scores[j]
            x1,y1 = dets[:2]
            x2,y2 = dets[:2] +dets[2:]
            cv2.rectangle(img,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),2)
            txt = "{:.3f}".format(score)
            point = (int(x1),int(y1-5))
            cv2.putText(img,txt,point,cv2.FONT_HERSHEY_COMPLEX,0.5,(0,255,0),1)
        return img

    def detectheads(self,imgpath):
        if os.path.isdir(imgpath):
            cnts = os.listdir(imgpath)
            for tmp in cnts:
                tmppath = os.path.join(imgpath,tmp.strip())
                img = cv2.imread(tmppath)
                if img is None:
                    continue
                showimg,_ = self.inference_img(img)
                cv2.imshow('demo',showimg)
                cv2.waitKey(0)
        elif os.path.isfile(imgpath) and imgpath.endswith('txt'):
            # if not os.path.exists(self.save_dir):
            #     os.makedirs(self.save_dir)
            f_r = open(imgpath,'r')
            file_cnts = f_r.readlines()
            for j in tqdm(range(len(file_cnts))):
                tmp_file = file_cnts[j].strip()
                if len(tmp_file.split(','))>0:
                    tmp_file = tmp_file.split(',')[0]
                if not tmp_file.endswith('jpg'):
                    tmp_file = tmp_file +'.jpeg'
                tmp_path = os.path.join(self.img_dir,tmp_file) 
                if not os.path.exists(tmp_path):
                    print(tmp_path)
                    continue
                img = cv2.imread(tmp_path) 
                if img is None:
                    print('None',tmp)
                    continue
                frame,_ = self.inference_img(img)                
                cv2.imshow('result',frame)
                #savepath = os.path.join(self.save_dir,save_name)
                #cv2.imwrite('test.jpg',frame)
                cv2.waitKey(0) 
        elif os.path.isfile(imgpath) and imgpath.endswith(('.mp4','.avi')) :
            cap = cv2.VideoCapture(imgpath)
            if not cap.isOpened():
                print("failed open camera")
                return 0
            else: 
                while cap.isOpened():
                    _,img = cap.read()
                    frame,_ = self.inference_img(img)
                    cv2.imshow('result',frame)
                    q=cv2.waitKey(10) & 0xFF
                    if q == 27 or q ==ord('q'):
                        break
            cap.release()
            cv2.destroyAllWindows()
        elif os.path.isfile(imgpath):
            img = cv2.imread(imgpath)
            if img is not None:
                # grab next frame
                # update FPS counter
                frame,odm_maps = self.inference_img(img)
                # hotmaps = self.get_hotmaps(odm_maps)
                # self.display_hotmap(hotmaps)
                # keybindings for display
                cv2.imshow('result',frame)
                #cv2.imwrite('test30.jpg',frame)
                key = cv2.waitKey(0) 
        else:
            print('please input the right img-path')