def oderest(sizes,x,u,pi,t,constants,boundary,restrictions): #print("\nIn oderest.") # get sizes N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] q = sizes['q'] #print("Calc phi...") # calculate phi and psi phi = calcPhi(sizes,x,u,pi,constants,restrictions) # err: phi - dx/dt err = phi - ddt(sizes,x) # get gradients #print("Calc grads...") Grads = calcGrads(sizes,x,u,pi,constants,restrictions) dt = Grads['dt'] phix = Grads['phix'] lam = 0*x; mu = numpy.zeros(q) B = numpy.zeros((N,m)) C = numpy.zeros(p) #print("Integrating ODE for A...") # integrate equation for A: A = numpy.zeros((N,n)) for k in range(N-1): derk = phix[k,:].dot(A[k,:]) + err[k,:] aux = A[k,:] + dt*derk A[k+1,:] = A[k,:] + .5*dt*( derk + phix[k+1,:].dot(aux) + err[k+1,:]) # optPlot = dict() # optPlot['mode'] = 'var' # plotSol(sizes,t,A,B,C,constants,restrictions,optPlot) #print("Calculating step...") alfa = calcStepOdeRest(sizes,t,x,u,pi,A,B,C,constants,boundary,restrictions) nx = x + alfa * A print("Leaving oderest with alfa =",alfa) return nx,u,pi,lam,mu
def oderest(sizes, x, u, pi, t, constants, boundary, restrictions): print("\nIn oderest.") # get sizes N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] print("Calc phi...") # calculate phi and psi phi = calcPhi(sizes, x, u, pi, constants, restrictions) # aux: phi - dx/dt aux = phi - ddt(sizes, x) # get gradients print("Calc grads...") Grads = calcGrads(sizes, x, u, pi, constants, restrictions) phix = Grads['phix'] lam = 0 * x B = numpy.zeros((N, m)) C = numpy.zeros(p) print("Integrating ODE for A...") # integrate equation for A: A = odeint(calcADotOdeRest, numpy.zeros(n), t, args=(t, phix, aux)) #optPlot = dict() #optPlot['mode'] = 'var' #plotSol(sizes,t,A,B,C,constants,restrictions,optPlot) print("Calculating step...") alfa = calcStepOdeRest(sizes, t, x, u, pi, A, B, C, constants, boundary, restrictions) nx = x + alfa * A print("Leaving oderest with alfa =", alfa) return nx, u, pi, lam, mu
def rest(sizes,x,u,pi,t,constants,boundary,restrictions,mustPlot=False): #print("\nIn rest.") # get sizes N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] q = sizes['q'] #print("Calc phi...") # calculate phi and psi phi = calcPhi(sizes,x,u,pi,constants,restrictions) #print("Calc psi...") psi = calcPsi(sizes,x,boundary) # aux: phi - dx/dt err = phi - ddt(sizes,x) # get gradients #print("Calc grads...") Grads = calcGrads(sizes,x,u,pi,constants,restrictions) dt = Grads['dt'] #dt6 = dt/6 phix = Grads['phix'] phiu = Grads['phiu'] phip = Grads['phip'] psix = Grads['psix'] psip = Grads['psip'] #print("Preparing matrices...") psixTr = psix.transpose() phixInv = phix.copy() phiuTr = numpy.empty((N,m,n)) phipTr = numpy.empty((N,p,n)) psipTr = psip.transpose() for k in range(N): phixInv[k,:,:] = phix[N-k-1,:,:].transpose() phiuTr[k,:,:] = phiu[k,:,:].transpose() phipTr[k,:,:] = phip[k,:,:].transpose() mu = numpy.zeros(q) # Matrix for linear system involving k's M = numpy.ones((q+1,q+1)) # column vector for linear system involving k's [eqs (88-89)] col = numpy.zeros(q+1) col[0] = 1.0 # eq (88) col[1:] = -psi # eq (89) arrayA = numpy.empty((q+1,N,n)) arrayB = numpy.empty((q+1,N,m)) arrayC = numpy.empty((q+1,p)) arrayL = arrayA.copy() arrayM = numpy.empty((q+1,q)) optPlot = dict() #print("Beginning loop for solutions...") for i in range(q+1): # print("\nIntegrating solution "+str(i+1)+" of "+str(q+1)+"...\n") mu = 0.0*mu if i<q: mu[i] = 1.0e-10 # integrate equation (75-2) backwards auxLamInit = - psixTr.dot(mu) auxLam = numpy.empty((N,n)) auxLam[0,:] = auxLamInit # Euler implicit I = numpy.eye(n) for k in range(N-1): auxLam[k+1,:] = numpy.linalg.solve(I-dt*phixInv[k+1,:],auxLam[k,:]) # Euler's method # for k in range(N-1): # auxLam[k+1,:] = auxLam[k,:] + dt * phixInv[k,:,:].dot(auxLam[k,:]) # Heun's method #for k in range(N-1): # derk = phixInv[k,:,:].dot(auxLam[k,:]) # aux = auxLam[k,:] + dt*derk # auxLam[k+1,:] = auxLam[k,:] + \ # .5*dt*(derk + phixInv[k+1,:,:].dot(aux)) # RK4 method (with interpolation...) # for k in range(N-1): # phixInv_k = phixInv[k,:,:] # phixInv_kp1 = phixInv[k+1,:,:] # phixInv_kpm = .5*(phixInv_k+phixInv_kp1) # k1 = phixInv_k.dot(auxLam[k,:]) # k2 = phixInv_kpm.dot(auxLam[k,:]+.5*dt*k1) # k3 = phixInv_kpm.dot(auxLam[k,:]+.5*dt*k2) # k4 = phixInv_kp1.dot(auxLam[k,:]+dt*k3) # auxLam[k+1,:] = auxLam[k,:] + dt6 * (k1+k2+k2+k3+k3+k4) # equation for Bi (75-3) B = numpy.empty((N,m)) lam = 0*x for k in range(N): lam[k,:] = auxLam[N-k-1,:] B[k,:] = phiuTr[k,:,:].dot(lam[k,:]) ################################################################## # TESTING LAMBDA DIFFERENTIAL EQUATION dlam = ddt(sizes,lam) erroLam = numpy.empty((N,n)) normErroLam = numpy.empty(N) for k in range(N): erroLam[k,:] = dlam[k,:]+phix[k,:,:].transpose().dot(lam[k,:]) normErroLam[k] = erroLam[k,:].transpose().dot(erroLam[k,:]) maxNormErroLam = normErroLam.max() print("maxNormErroLam =",maxNormErroLam) #print("\nLambda Error:") # #optPlot['mode'] = 'states:LambdaError' #plotSol(sizes,t,erroLam,numpy.zeros((N,m)),numpy.zeros(p),\ # constants,restrictions,optPlot) #optPlot['mode'] = 'states:LambdaError (zoom)' #N1 = 0#int(N/100)-10 #N2 = 20##N1+20 #plotSol(sizes,t[N1:N2],erroLam[N1:N2,:],numpy.zeros((N2-N1,m)),\ # numpy.zeros(p),constants,restrictions,optPlot) #plt.semilogy(normErroLam) #plt.grid() #plt.title("ErroLam") #plt.show() #plt.semilogy(normErroLam[N1:N2]) #plt.grid() #plt.title("ErroLam (zoom)") #plt.show() ################################################################## scal = 1.0/((numpy.absolute(B)).max()) lam *= scal mu *= scal B *= scal # equation for Ci (75-4) C = numpy.zeros(p) for k in range(1,N-1): C += phipTr[k,:,:].dot(lam[k,:]) C += .5*(phipTr[0,:,:].dot(lam[0,:])) C += .5*(phipTr[N-1,:,:].dot(lam[N-1,:])) C *= dt C -= -psipTr.dot(mu) # optPlot['mode'] = 'states:Lambda' # plotSol(sizes,t,lam,B,C,constants,restrictions,optPlot) # # optPlot['mode'] = 'states:Lambda (zoom)' # plotSol(sizes,t[N1:N2],lam[N1:N2,:],B[N1:N2,:],C,constants,restrictions,optPlot) #print("Integrating ODE for A ["+str(i)+"/"+str(q)+"] ...") # integrate equation for A: A = numpy.zeros((N,n)) for k in range(N-1): derk = phix[k,:,:].dot(A[k,:]) + phiu[k,:,:].dot(B[k,:]) + \ phip[k,:,:].dot(C) + err[k,:] aux = A[k,:] + dt*derk A[k+1,:] = A[k,:] + .5*dt*(derk + \ phix[k+1,:,:].dot(aux) + \ phiu[k+1,:,:].dot(B[k+1,:]) + \ phip[k+1,:,:].dot(C) + \ err[k+1,:]) # for k in range(N-1): # phix_k = phix[k,:,:] # phix_kp1 = phix[k+1,:,:] # phix_kpm = .5*(phix_k+phix_kp1) # add_k = phiu[k,:,:].dot(B[k,:]) + phip[k,:,:].dot(C) + err[k,:] # add_kp1 = phiu[k+1,:,:].dot(B[k+1,:]) + phip[k+1,:,:].dot(C) + err[k+1,:] # add_kpm = .5*(add_k+add_kp1) # # k1 = phix_k.dot(A[k,:]) + add_k # k2 = phix_kpm.dot(A[k,:]+.5*dt*k1) + add_kpm # k3 = phix_kpm.dot(A[k,:]+.5*dt*k2) + add_kpm # k4 = phix_kp1.dot(A[k,:]+dt*k3) + add_kp1 # A[k+1,:] = A[k,:] + dt6 * (k1+k2+k2+k3+k3+k4) else: # integrate equation (75-2) backwards lam *= 0.0 # equation for Bi (75-3) B *= 0.0 # equation for Ci (75-4) C *= 0.0 #print("Integrating ODE for A ["+str(i)+"/"+str(q)+"] ...") # integrate equation for A: A = numpy.zeros((N,n)) for k in range(N-1): derk = phix[k,:,:].dot(A[k,:]) + err[k,:] aux = A[k,:] + dt*derk A[k+1,:] = A[k,:] + .5*dt*(derk + \ phix[k+1,:,:].dot(aux) + err[k+1,:]) # for k in range(N-1): # phix_k = phix[k,:,:] # phix_kp1 = phix[k+1,:,:] # phix_kpm = .5*(phix_k+phix_kp1) # add_k = err[k,:] # add_kp1 = err[k+1,:] # add_kpm = .5*(add_k+add_kp1) # # k1 = phix_k.dot(A[k,:]) + add_k # k2 = phix_kpm.dot(A[k,:]+.5*dt*k1) + add_kpm # k3 = phix_kpm.dot(A[k,:]+.5*dt*k2) + add_kpm # k4 = phix_kp1.dot(A[k,:]+dt*k3) + add_kp1 # A[k+1,:] = A[i,:] + dt6 * (k1+k2+k2+k3+k3+k4) # # store solution in arrays arrayA[i,:,:] = A arrayB[i,:,:] = B arrayC[i,:] = C arrayL[i,:,:] = lam arrayM[i,:] = mu #optPlot['mode'] = 'var' #plotSol(sizes,t,A,B,C,constants,restrictions,optPlot) # Matrix for linear system (89) M[1:,i] = psix.dot(A[N-1,:]) + psip.dot(C) # # Calculations of weights k: print("M =",M) #print("col =",col) K = numpy.linalg.solve(M,col) print("K =",K) # summing up linear combinations A = 0.0*A B = 0.0*B C = 0.0*C lam = 0.0*lam mu = 0.0*mu for i in range(q+1): A += K[i]*arrayA[i,:,:] B += K[i]*arrayB[i,:,:] C += K[i]*arrayC[i,:] lam += K[i]*arrayL[i,:,:] mu += K[i]*arrayM[i,:] if mustPlot: optPlot['mode'] = 'var' plotSol(sizes,t,A,B,C,constants,restrictions,optPlot) optPlot['mode'] = 'proposed (states: lambda)' plotSol(sizes,t,lam,B,C,constants,restrictions,optPlot) #print("Calculating step...") alfa = calcStepRest(sizes,t,x,u,pi,A,B,C,constants,boundary,restrictions,mustPlot) nx = x + alfa * A nu = u + alfa * B np = pi + alfa * C print("Leaving rest with alfa =",alfa) return nx,nu,np,lam,mu
def rest(sizes, x, u, pi, t, constants, boundary, restrictions): #print("\nIn rest.") # get sizes N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] q = sizes['q'] #print("Calc phi...") # calculate phi and psi phi = calcPhi(sizes, x, u, pi, constants, restrictions) #print("Calc psi...") psi = calcPsi(sizes, x, boundary) # aux: phi - dx/dt err = phi - ddt(sizes, x) # get gradients #print("Calc grads...") Grads = calcGrads(sizes, x, u, pi, constants, restrictions) dt = Grads['dt'] # dt6 = dt/6 phix = Grads['phix'] phiu = Grads['phiu'] phip = Grads['phip'] psix = Grads['psix'] psip = Grads['psip'] #print("Preparing matrices...") psixTr = psix.transpose() phixInv = phix.copy() phiuTr = numpy.empty((N, m, n)) phipTr = numpy.empty((N, p, n)) psipTr = psip.transpose() for k in range(N): phixInv[k, :, :] = phix[N - k - 1, :, :].transpose() phiuTr[k, :, :] = phiu[k, :, :].transpose() phipTr[k, :, :] = phip[k, :, :].transpose() mu = numpy.zeros(q) # Matrix for linear system involving k's M = numpy.ones((q + 1, q + 1)) # column vector for linear system involving k's [eqs (88-89)] col = numpy.zeros(q + 1) col[0] = 1.0 # eq (88) col[1:] = -psi # eq (89) arrayA = numpy.empty((q + 1, N, n)) arrayB = numpy.empty((q + 1, N, m)) arrayC = numpy.empty((q + 1, p)) arrayL = arrayA.copy() arrayM = numpy.empty((q + 1, q)) optPlot = dict() #print("Beginning loop for solutions...") for i in range(q + 1): print("\nIntegrating solution " + str(i + 1) + " of " + str(q + 1) + "...\n") mu = 0.0 * mu if i < q: mu[i] = 1.0 # integrate equation (75-2) backwards auxLamInit = -psixTr.dot(mu) auxLam = numpy.empty((N, n)) auxLam[0, :] = auxLamInit for k in range(N - 1): derk = phixInv[k, :, :].dot(auxLam[k, :]) aux = auxLam[k, :] + dt * derk auxLam[k+1,:] = auxLam[k,:] + \ .5*dt*(derk + phixInv[k+1,:,:].dot(aux)) # for k in range(N-1): # phixInv_k = phixInv[k,:,:] # phixInv_kp1 = phixInv[k+1,:,:] # phixInv_kpm = .5*(phixInv_k+phixInv_kp1) # k1 = phixInv_k.dot(auxLam[k,:]) # k2 = phixInv_kpm.dot(auxLam[k,:]+.5*dt*k1) # k3 = phixInv_kpm.dot(auxLam[k,:]+.5*dt*k2) # k4 = phixInv_kp1.dot(auxLam[k,:]+dt*k3) # auxLam[k+1,:] = auxLam[k,:] + dt6 * (k1+k2+k2+k3+k3+k4) # equation for Bi (75-3) B = numpy.empty((N, m)) lam = 0 * x for k in range(N): lam[k, :] = auxLam[N - k - 1, :] B[k, :] = phiuTr[k, :, :].dot(lam[k, :]) scal = 1.0 / ((numpy.absolute(B)).max()) lam *= scal mu *= scal B *= scal # equation for Ci (75-4) C = numpy.zeros(p) for k in range(1, N - 1): C += phipTr[k, :, :].dot(lam[k, :]) C += .5 * (phipTr[0, :, :].dot(lam[0, :])) C += .5 * (phipTr[N - 1, :, :].dot(lam[N - 1, :])) C *= dt C -= -psipTr.dot(mu) optPlot['mode'] = 'states:Lambda' plotSol(sizes, t, lam, B, C, constants, restrictions, optPlot) optPlot['mode'] = 'states:Lambda (zoom)' plotSol(sizes, t[0:10], lam[0:10, :], B[0:10, :], C, constants, restrictions, optPlot) #print("Integrating ODE for A ["+str(i)+"/"+str(q)+"] ...") # integrate equation for A: A = numpy.zeros((N, n)) for k in range(N - 1): derk = phix[k,:,:].dot(A[k,:]) + phiu[k,:,:].dot(B[k,:]) + \ phip[k,:,:].dot(C) + err[k,:] aux = A[k, :] + dt * derk A[k+1,:] = A[k,:] + .5*dt*(derk + \ phix[k+1,:,:].dot(aux) + \ phiu[k+1,:,:].dot(B[k+1,:]) + \ phip[k+1,:,:].dot(C) + \ err[k+1,:]) # for k in range(N-1): # phix_k = phix[k,:,:] # phix_kp1 = phix[k+1,:,:] # phix_kpm = .5*(phix_k+phix_kp1) # add_k = phiu[k,:,:].dot(B[k,:]) + phip[k,:,:].dot(C) + err[k,:] # add_kp1 = phiu[k+1,:,:].dot(B[k+1,:]) + phip[k+1,:,:].dot(C) + err[k+1,:] # add_kpm = .5*(add_k+add_kp1) # # k1 = phix_k.dot(A[k,:]) + add_k # k2 = phix_kpm.dot(A[k,:]+.5*dt*k1) + add_kpm # k3 = phix_kpm.dot(A[k,:]+.5*dt*k2) + add_kpm # k4 = phix_kp1.dot(A[k,:]+dt*k3) + add_kp1 # A[k+1,:] = A[k,:] + dt6 * (k1+k2+k2+k3+k3+k4) else: # integrate equation (75-2) backwards lam *= 0.0 # equation for Bi (75-3) B *= 0.0 # equation for Ci (75-4) C *= 0.0 #print("Integrating ODE for A ["+str(i)+"/"+str(q)+"] ...") # integrate equation for A: A = numpy.zeros((N, n)) for k in range(N - 1): derk = phix[k, :, :].dot(A[k, :]) + err[k, :] aux = A[k, :] + dt * derk A[k+1,:] = A[k,:] + .5*dt*(derk + \ phix[k+1,:,:].dot(aux) + err[k+1,:]) # for k in range(N-1): # phix_k = phix[k,:,:] # phix_kp1 = phix[k+1,:,:] # phix_kpm = .5*(phix_k+phix_kp1) # add_k = err[k,:] # add_kp1 = err[k+1,:] # add_kpm = .5*(add_k+add_kp1) # # k1 = phix_k.dot(A[k,:]) + add_k # k2 = phix_kpm.dot(A[k,:]+.5*dt*k1) + add_kpm # k3 = phix_kpm.dot(A[k,:]+.5*dt*k2) + add_kpm # k4 = phix_kp1.dot(A[k,:]+dt*k3) + add_kp1 # A[k+1,:] = A[i,:] + dt6 * (k1+k2+k2+k3+k3+k4) # # store solution in arrays arrayA[i, :, :] = A arrayB[i, :, :] = B arrayC[i, :] = C arrayL[i, :, :] = lam arrayM[i, :] = mu optPlot['mode'] = 'var' plotSol(sizes, t, A, B, C, constants, restrictions, optPlot) # Matrix for linear system (89) M[1:, i] = psix.dot(A[N - 1, :]) + psip.dot(C) # # Calculations of weights k: print("M =", M) print("col =", col) K = numpy.linalg.solve(M, col) print("K =", K) # summing up linear combinations A = 0.0 * A B = 0.0 * B C = 0.0 * C lam = 0.0 * lam mu = 0.0 * mu for i in range(q + 1): A += K[i] * arrayA[i, :, :] B += K[i] * arrayB[i, :, :] C += K[i] * arrayC[i, :] lam += K[i] * arrayL[i, :, :] mu += K[i] * arrayM[i, :] optPlot['mode'] = 'var' plotSol(sizes, t, A, B, C, constants, restrictions, optPlot) optPlot['mode'] = 'states: lambda' plotSol(sizes, t, lam, B, C, constants, restrictions, optPlot) #print("Calculating step...") alfa = calcStepRest(sizes, t, x, u, pi, A, B, C, constants, boundary, restrictions) nx = x + alfa * A nu = u + alfa * B np = pi + alfa * C print("Leaving rest with alfa =", alfa) return nx, nu, np, lam, mu
def grad(sizes, x, u, pi, t, Q0, restrictions): print("In grad.") print("Q0 =", Q0) # get sizes N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] q = sizes['q'] # get gradients Grads = calcGrads(sizes, x, u, pi, constants, restrictions) phix = Grads['phix'] phiu = Grads['phiu'] phip = Grads['phip'] fx = Grads['fx'] fu = Grads['fu'] fp = Grads['fp'] psix = Grads['psix'] psip = Grads['psip'] dt = Grads['dt'] # prepare time reversed/transposed versions of the arrays psixTr = psix.transpose() fxInv = fx.copy() phixInv = phix.copy() phiuTr = numpy.empty((N, m, n)) phipTr = numpy.empty((N, p, n)) for k in range(N): fxInv[k, :] = fx[N - k - 1, :] phixInv[k, :, :] = phix[N - k - 1, :, :].transpose() phiuTr[k, :, :] = phiu[k, :, :].transpose() phipTr[k, :, :] = phip[k, :, :].transpose() psipTr = psip.transpose() # Prepare array mu and arrays for linear combinations of A,B,C,lam mu = numpy.zeros(q) M = numpy.ones((q + 1, q + 1)) arrayA = numpy.empty((q + 1, N, n)) arrayB = numpy.empty((q + 1, N, m)) arrayC = numpy.empty((q + 1, p)) arrayL = arrayA.copy() arrayM = numpy.empty((q + 1, q)) for i in range(q + 1): mu = 0.0 * mu if i < q: mu[i] = 1.0 #print("mu =",mu) # integrate equation (38) backwards for lambda auxLamInit = -psixTr.dot(mu) #auxLam = numpy.empty((N,n)) #auxLam[0,:] = auxLamInit #for k in range(N-1): # auxLam[k+1,:] = auxLam[k,:] + dt*(phixInv[k,:,:].dot(auxLam[k-1,:])) auxLam = odeint(calcLamDotGrad, auxLamInit, t, args=(t, fxInv, phixInv)) # Calculate B B = -fu lam = auxLam.copy() for k in range(N): lam[k, :] = auxLam[N - k - 1, :] B[k, :] += phiuTr[k, :, :].dot(lam[k, :]) # Calculate C C = numpy.zeros(p) for k in range(1, N - 1): C += fp[k, :] - phipTr[k, :, :].dot(lam[k, :]) C += .5 * (fp[0, :] - phipTr[0, :, :].dot(lam[0, :])) C += .5 * (fp[N - 1, :] - phipTr[N - 1, :, :].dot(lam[N - 1, :])) C *= -dt C -= -psipTr.dot(mu) # plt.plot(t,B) # plt.grid(True) # plt.xlabel("t") # plt.ylabel("B") # plt.show() # # integrate diff equation for A # A = numpy.zeros((N,n)) # for k in range(N-1): # A[k+1,:] = A[k,:] + dt*(phix[k,:,:].dot(A[k,:]) + \ # phiu[k,:,:].dot(B[k,:]) + \ # phip[k,:].dot(C[k,:])) A = odeint(calcADotGrad, numpy.zeros(n), t, args=(t, phix, phiu, phip, B, C)) # plt.plot(t,A) # plt.grid(True) # plt.xlabel("t") # plt.ylabel("A") # plt.show() arrayA[i, :, :] = A arrayB[i, :, :] = B arrayC[i, :] = C arrayL[i, :, :] = lam arrayM[i, :] = mu M[1:, i] = psix.dot(A[N - 1, :]) + psip.dot(C) # # Calculations of weights k: col = numpy.zeros(q + 1) col[0] = 1.0 K = numpy.linalg.solve(M, col) print("K =", K) # summing up linear combinations A = 0.0 * A B = 0.0 * B C = 0.0 * C lam = 0.0 * lam mu = 0.0 * mu for i in range(q + 1): A += K[i] * arrayA[i, :, :] B += K[i] * arrayB[i, :, :] C += K[i] * arrayC[i, :] lam += K[i] * arrayL[i, :, :] mu += K[i] * arrayM[i, :] # Calculation of alfa alfa = calcStepGrad(x, u, pi, lam, mu, A, B, C, restrictions) nx = x + alfa * A nu = u + alfa * B np = pi + alfa * C Q = calcQ(sizes, nx, nu, np, lam, mu, constants, restrictions) print("Leaving grad with alfa =", alfa) return nx, nu, np, lam, mu, Q
def calcQ(sizes, x, u, pi, lam, mu, constants, restrictions): # Q expression from (15) N = sizes['N'] p = sizes['p'] dt = 1.0 / (N - 1) # get gradients Grads = calcGrads(sizes, x, u, pi, constants, restrictions) phix = Grads['phix'] phiu = Grads['phiu'] phip = Grads['phip'] fx = Grads['fx'] fu = Grads['fu'] fp = Grads['fp'] psix = Grads['psix'] #psip = Grads['psip'] dlam = ddt(sizes, lam) Qx = 0.0 Qu = 0.0 Qp = 0.0 Qt = 0.0 Q = 0.0 auxVecIntQ = numpy.zeros(p) isnan = 0 for k in range(1, N - 1): # dlam[k,:] = lam[k,:]-lam[k-1,:] Qx += norm(dlam[k, :] - fx[k, :] + phix[k, :, :].transpose().dot(lam[k, :]))**2 Qu += norm(fu[k, :] - phiu[k, :, :].transpose().dot(lam[k, :]))**2 auxVecIntQ += fp[k, :] - phip[k, :, :].transpose().dot(lam[k, :]) if numpy.math.isnan(Qx) or numpy.math.isnan(Qu): isnan += 1 if isnan == 1: print("k_nan=", k) # Qx += .5 * (norm(dlam[0, :] - fx[0, :] + phix[0, :, :].transpose().dot(lam[0, :]))**2) Qx += .5 * (norm(dlam[N - 1, :] - fx[N - 1, :] + phix[N - 1, :, :].transpose().dot(lam[N - 1, :]))**2) Qu += .5 * norm(fu[0, :] - phiu[0, :, :].transpose().dot(lam[0, :]))**2 Qu += .5 * norm(fu[N - 1, :] - phiu[N - 1, :, :].transpose().dot(lam[N - 1, :]))**2 Qx *= dt Qu *= dt auxVecIntQ += .5 * (fp[0, :] - phip[0, :, :].transpose().dot(lam[0, :])) auxVecIntQ += .5 * (fp[N - 1, :] - phip[N - 1, :, :].transpose().dot(lam[N - 1, :])) auxVecIntQ *= dt Qp = norm(auxVecIntQ) Qt = norm(lam[N - 1, :] + psix.transpose().dot(mu)) #"Qx =",Qx) Q = Qx + Qu + Qp + Qt print("Q = {:.4E}".format(Q) + ": Qx = {:.4E}".format(Qx) + ", Qu = {:.4E}".format(Qu) + ", Qp = {:.4E}".format(Qp) + ", Qt = {:.4E}".format(Qt)) return Q
if __name__ == "__main__": print( '--------------------------------------------------------------------------------' ) print('\nThis is SGRA_SIMPLE_ROCKET_ALT.py!') print(datetime.datetime.now()) print('\n') opt = dict() opt['initMode'] = 'extSol' #'default'#'extSol' # declare problem: sizes, t, x, u, pi, lam, mu, tol, constants, boundary, restrictions = declProb( opt) Grads = calcGrads(sizes, x, u, pi, constants, restrictions) phi = calcPhi(sizes, x, u, pi, constants, restrictions) psi = calcPsi(sizes, x, boundary) # phix = Grads['phix'] # phiu = Grads['phiu'] # psix = Grads['psix'] # psip = Grads['psip'] print("\nProposed initial guess:\n") P, Pint, Ppsi = calcP(sizes, x, u, pi, constants, boundary, restrictions, True) print("P = {:.4E}".format(P)+", Pint = {:.4E}".format(Pint)+\ ", Ppsi = {:.4E}".format(Ppsi)+"\n") Q = calcQ(sizes, x, u, pi, lam, mu, constants, restrictions) optPlot = dict()
def grad(sizes, x, u, pi, t, Q0, constants, boundary, restrictions, mustPlot=False): print("In grad.") print("Q0 =", Q0, "\n") # get sizes N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] q = sizes['q'] # get gradients Grads = calcGrads(sizes, x, u, pi, constants, restrictions) phix = Grads['phix'] phiu = Grads['phiu'] phip = Grads['phip'] fx = Grads['fx'] fu = Grads['fu'] fp = Grads['fp'] psix = Grads['psix'] psip = Grads['psip'] dt = Grads['dt'] # prepare time reversed/transposed versions of the arrays psixTr = psix.transpose() fxInv = fx.copy() phixInv = phix.copy() phiuTr = numpy.empty((N, m, n)) phipTr = numpy.empty((N, p, n)) for k in range(N): fxInv[k, :] = fx[N - k - 1, :] phixInv[k, :, :] = phix[N - k - 1, :, :].transpose() phiuTr[k, :, :] = phiu[k, :, :].transpose() phipTr[k, :, :] = phip[k, :, :].transpose() psipTr = psip.transpose() # Prepare array mu and arrays for linear combinations of A,B,C,lam mu = numpy.zeros(q) auxLam = 0 * x lam = 0 * x M = numpy.ones((q + 1, q + 1)) arrayA = numpy.empty((q + 1, N, n)) arrayB = numpy.empty((q + 1, N, m)) arrayC = numpy.empty((q + 1, p)) arrayL = arrayA.copy() arrayM = numpy.empty((q + 1, q)) optPlot = dict() #ind1 = [1,2,0] #ind2 = [2,0,1] for i in range(q + 1): print("\n>Integrating solution " + str(i + 1) + " of " + str(q + 1) + "...\n") mu = 0.0 * mu if i < q: mu[i] = 1.0e-7 #mu[i] = ((-1)**i)*1.0e-8#10#1.0#e-5# #mu[ind1[i]] = 1.0e-8 #mu[ind2[i]] = -1.0e-8 # integrate equation (38) backwards for lambda auxLam[0, :] = -psixTr.dot(mu) # Euler implicit I = numpy.eye(n) for k in range(N - 1): auxLam[k+1,:] = numpy.linalg.solve(I-dt*phixInv[k+1,:],\ auxLam[k,:]-fxInv[k,:]*dt) # #auxLam = numpy.empty((N,n)) #auxLam[0,:] = auxLamInit #for k in range(N-1): # auxLam[k+1,:] = auxLam[k,:] + dt*(phixInv[k,:,:].dot(auxLam[k-1,:])) # Calculate B B = -fu.copy() for k in range(N): lam[k, :] = auxLam[N - k - 1, :] B[k, :] += phiuTr[k, :, :].dot(lam[k, :]) ################################################################## # TESTING LAMBDA DIFFERENTIAL EQUATION if i < q: #otherwise, there's nothing to test here... dlam = ddt(sizes, lam) erroLam = numpy.empty((N, n)) normErroLam = numpy.empty(N) for k in range(N): erroLam[k, :] = dlam[k, :] + phix[k, :, :].transpose().dot( lam[k, :]) - fx[k, :] normErroLam[k] = erroLam[k, :].transpose().dot(erroLam[k, :]) if mustPlot: print("\nLambda Error:") optPlot['mode'] = 'states:LambdaError' plotSol(sizes,t,erroLam,numpy.zeros((N,m)),numpy.zeros(p),\ constants,restrictions,optPlot) maxNormErroLam = normErroLam.max() print("maxNormErroLam =", maxNormErroLam) if mustPlot and (maxNormErroLam > 0): plt.semilogy(normErroLam) plt.grid() plt.title("ErroLam") plt.show() ################################################################## # Calculate C C = numpy.zeros(p) for k in range(1, N - 1): C += fp[k, :] - phipTr[k, :, :].dot(lam[k, :]) C += .5 * (fp[0, :] - phipTr[0, :, :].dot(lam[0, :])) C += .5 * (fp[N - 1, :] - phipTr[N - 1, :, :].dot(lam[N - 1, :])) C *= -dt #yes, the minus sign is on purpose! C -= -psipTr.dot(mu) if mustPlot: optPlot['mode'] = 'states:Lambda' plotSol(sizes, t, lam, B, C, constants, restrictions, optPlot) # integrate diff equation for A A = numpy.zeros((N, n)) for k in range(N - 1): derk = phix[k,:,:].dot(A[k,:]) + phiu[k,:,:].dot(B[k,:]) + \ phip[k,:,:].dot(C) aux = A[k, :] + dt * derk A[k+1,:] = A[k,:] + .5*dt*(derk + \ phix[k+1,:,:].dot(aux) + \ phiu[k+1,:,:].dot(B[k+1,:]) + \ phip[k+1,:,:].dot(C)) # for k in range(N-1): # A[k+1,:] = numpy.linalg.solve(I-dt*phix[k+1,:,:],\ # A[k,:] + dt*(phiu[k,:,:].dot(B[k,:]) + phip[k,:,:].dot(C))) #A = numpy.zeros((N,n)) #for k in range(N-1): # A[k+1,:] = A[k,:] + dt*(phix[k,:,:].dot(A[k,:]) + \ # phiu[k,:,:].dot(B[k,:]) + \ # phip[k,:].dot(C[k,:])) dA = ddt(sizes, A) erroA = numpy.empty((N, n)) normErroA = numpy.empty(N) for k in range(N): erroA[k, :] = dA[k, :] - phix[k, :, :].dot( A[k, :]) - phiu[k, :, :].dot(B[k, :]) - phip[k, :, :].dot(C) normErroA[k] = erroA[k, :].dot(erroA[k, :]) if mustPlot: print("\nA Error:") optPlot['mode'] = 'states:AError' plotSol(sizes,t,erroA,B,C,\ constants,restrictions,optPlot) maxNormErroA = normErroA.max() print("maxNormErroA =", maxNormErroA) if mustPlot and (maxNormErroA > 0): plt.semilogy(normErroA) plt.grid() plt.title("ErroA") plt.show() arrayA[i, :, :] = A arrayB[i, :, :] = B arrayC[i, :] = C arrayL[i, :, :] = lam arrayM[i, :] = mu if mustPlot: optPlot['mode'] = 'var' plotSol(sizes, t, A, B, C, constants, restrictions, optPlot) M[1:, i] = psix.dot(A[N - 1, :]) + psip.dot(C) # # Calculations of weights k: col = numpy.zeros(q + 1) col[0] = 1.0 print("M =", M) print("col =", col) K = numpy.linalg.solve(M, col) print("K =", K) print("Residual =", M.dot(K) - col) # summing up linear combinations A = 0.0 * A B = 0.0 * B C = 0.0 * C lam = 0.0 * lam mu = 0.0 * mu for i in range(q + 1): A += K[i] * arrayA[i, :, :] B += K[i] * arrayB[i, :, :] C += K[i] * arrayC[i, :] lam += K[i] * arrayL[i, :, :] mu += K[i] * arrayM[i, :] ########################################## dlam = ddt(sizes, lam) dA = ddt(sizes, A) erroLam = numpy.empty((N, n)) erroA = numpy.empty((N, n)) normErroLam = numpy.empty(N) normErroA = numpy.empty(N) for k in range(N): erroLam[k, :] = dlam[k, :] + phix[k, :, :].transpose().dot( lam[k, :]) - fx[k, :] normErroLam[k] = erroLam[k, :].transpose().dot(erroLam[k, :]) erroA[k, :] = dA[k, :] - phix[k, :, :].dot( A[k, :]) - phiu[k, :, :].dot(B[k, :]) - phip[k, :, :].dot(C) normErroA[k] = erroA[k, :].dot(erroA[k, :]) if mustPlot: print("\nFINAL A Error:") optPlot['mode'] = 'states:AError' plotSol(sizes,t,erroA,B,C,\ constants,restrictions,optPlot) maxNormErroA = normErroA.max() print("FINAL maxNormErroA =", maxNormErroA) if mustPlot and (maxNormErroA > 0): plt.semilogy(normErroA) plt.grid() plt.title("ErroA") plt.show() if mustPlot: print("\nFINAL Lambda Error:") optPlot['mode'] = 'states:LambdaError' plotSol(sizes,t,erroLam,B,C,\ constants,restrictions,optPlot) maxNormErroLam = normErroLam.max() print("FINAL maxNormErroLam =", maxNormErroLam) if mustPlot and (maxNormErroLam > 0): plt.semilogy(normErroLam) plt.grid() plt.title("ErroLam") plt.show() ########################################## #if (B>numpy.pi).any() or (B<-numpy.pi).any(): # print("\nProblems in grad: corrections will result in control overflow.") if mustPlot: optPlot['mode'] = 'var' plotSol(sizes, t, A, B, C, constants, restrictions, optPlot) optPlot['mode'] = 'proposed (states: lambda)' plotSol(sizes, t, lam, B, C, constants, restrictions, optPlot) # Calculation of alfa alfa = calcStepGrad(sizes, x, u, pi, lam, mu, A, B, C, constants, boundary, restrictions) nx = x + alfa * A nu = u + alfa * B np = pi + alfa * C Q = calcQ(sizes, nx, nu, np, lam, mu, constants, restrictions, mustPlot) print("Leaving grad with alfa =", alfa) return nx, nu, np, lam, mu, Q
def calcQ(sizes, x, u, pi, lam, mu, constants, restrictions, mustPlot=False): # Q expression from (15) N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] dt = 1.0 / (N - 1) # get gradients Grads = calcGrads(sizes, x, u, pi, constants, restrictions) phix = Grads['phix'] phiu = Grads['phiu'] phip = Grads['phip'] fx = Grads['fx'] fu = Grads['fu'] fp = Grads['fp'] psix = Grads['psix'] psip = Grads['psip'] dlam = ddt(sizes, lam) Qx = 0.0 Qu = 0.0 Qp = 0.0 Qt = 0.0 Q = 0.0 auxVecIntQp = numpy.zeros(p) errQx = numpy.empty((N, n)) normErrQx = numpy.empty(N) errQu = numpy.empty((N, m)) normErrQu = numpy.empty(N) errQp = numpy.empty((N, p)) #normErrQp = numpy.empty(N) for k in range(N): errQx[k, :] = dlam[k, :] - fx[k, :] + phix[k, :, :].transpose().dot( lam[k, :]) errQu[k, :] = fu[k, :] - phiu[k, :, :].transpose().dot(lam[k, :]) errQp[k, :] = fp[k, :] - phip[k, :, :].transpose().dot(lam[k, :]) normErrQx[k] = errQx[k, :].transpose().dot(errQx[k, :]) normErrQu[k] = errQu[k, :].transpose().dot(errQu[k, :]) Qx += normErrQx[k] Qu += normErrQu[k] auxVecIntQp += errQp[k, :] # Qx -= .5 * (normErrQx[0] + normErrQx[N - 1]) Qu -= .5 * (normErrQu[0] + normErrQu[N - 1]) Qx *= dt Qu *= dt auxVecIntQp -= .5 * (errQp[0, :] + errQp[N - 1, :]) auxVecIntQp *= dt auxVecIntQp += psip.transpose().dot(mu) Qp = auxVecIntQp.transpose().dot(auxVecIntQp) errQt = lam[N - 1, :] + psix.transpose().dot(mu) Qt = errQt.transpose().dot(errQt) Q = Qx + Qu + Qp + Qt print("Q = {:.4E}".format(Q) + ": Qx = {:.4E}".format(Qx) + ", Qu = {:.4E}".format(Qu) + ", Qp = {:.4E}".format(Qp) + ", Qt = {:.4E}".format(Qt)) if mustPlot: tPlot = numpy.arange(0, 1.0 + dt, dt) plt.plot(tPlot, normErrQx) plt.grid(True) plt.title("Integrand of Qx") plt.show() plt.plot(tPlot, normErrQu) plt.grid(True) plt.title("Integrand of Qu") plt.show() # for zoomed version: indMaxQx = normErrQx.argmax() ind1 = numpy.array([indMaxQx - 20, 0]).max() ind2 = numpy.array([indMaxQx + 20, N - 1]).min() plt.plot(tPlot[ind1:ind2], normErrQx[ind1:ind2], 'o') plt.grid(True) plt.title("Integrand of Qx (zoom)") plt.show() n = sizes['n'] m = sizes['m'] if n == 4 and m == 2: plt.plot(tPlot[ind1:ind2], errQx[ind1:ind2, 0]) plt.grid(True) plt.ylabel("Qx_h") plt.show() plt.plot(tPlot[ind1:ind2], errQx[ind1:ind2, 1], 'g') plt.grid(True) plt.ylabel("Qx_V") plt.show() plt.plot(tPlot[ind1:ind2], errQx[ind1:ind2, 2], 'r') plt.grid(True) plt.ylabel("Qx_gamma") plt.show() plt.plot(tPlot[ind1:ind2], errQx[ind1:ind2, 3], 'm') plt.grid(True) plt.ylabel("Qx_m") plt.show() print("\nStates, controls, lambda on the region of maxQx:") plt.plot(tPlot[ind1:ind2], x[ind1:ind2, 0]) plt.grid(True) plt.ylabel("h [km]") plt.show() plt.plot(tPlot[ind1:ind2], x[ind1:ind2, 1], 'g') plt.grid(True) plt.ylabel("V [km/s]") plt.show() plt.plot(tPlot[ind1:ind2], x[ind1:ind2, 2] * 180 / numpy.pi, 'r') plt.grid(True) plt.ylabel("gamma [deg]") plt.show() plt.plot(tPlot[ind1:ind2], x[ind1:ind2, 3], 'm') plt.grid(True) plt.ylabel("m [kg]") plt.show() plt.plot(tPlot[ind1:ind2], u[ind1:ind2, 0], 'k') plt.grid(True) plt.ylabel("u1 [-]") plt.show() plt.plot(tPlot[ind1:ind2], u[ind1:ind2, 1], 'c') plt.grid(True) plt.xlabel("t") plt.ylabel("u2 [-]") plt.show() print("Lambda:") plt.plot(tPlot[ind1:ind2], lam[ind1:ind2, 0]) plt.grid(True) plt.ylabel("lam_h") plt.show() plt.plot(tPlot[ind1:ind2], lam[ind1:ind2, 1], 'g') plt.grid(True) plt.ylabel("lam_V") plt.show() plt.plot(tPlot[ind1:ind2], lam[ind1:ind2, 2], 'r') plt.grid(True) plt.ylabel("lam_gamma") plt.show() plt.plot(tPlot[ind1:ind2], lam[ind1:ind2, 3], 'm') plt.grid(True) plt.ylabel("lam_m") plt.show() # print("dLambda/dt:") # # plt.plot(tPlot[ind1:ind2],dlam[ind1:ind2,0]) # plt.grid(True) # plt.ylabel("dlam_h") # plt.show() # # plt.plot(tPlot[ind1:ind2],dlam[ind1:ind2,1]) # plt.grid(True) # plt.ylabel("dlam_V") # plt.show() # # plt.plot(tPlot[ind1:ind2],dlam[ind1:ind2,2],'r') # plt.grid(True) # plt.ylabel("dlam_gamma") # plt.show() # # plt.plot(tPlot[ind1:ind2],dlam[ind1:ind2,3],'m') # plt.grid(True) # plt.ylabel("dlam_m") # plt.show() # # print("-phix*lambda:") # # plt.plot(tPlot[ind1:ind2],dlam[ind1:ind2,0]-errQx[ind1:ind2,0]) # plt.grid(True) # plt.ylabel("-phix*lambda_h") # plt.show() # # plt.plot(tPlot[ind1:ind2],dlam[ind1:ind2,1]-errQx[ind1:ind2,1],'g') # plt.grid(True) # plt.ylabel("-phix*lambda_V") # plt.show() # # plt.plot(tPlot[ind1:ind2],dlam[ind1:ind2,2]-errQx[ind1:ind2,2],'r') # plt.grid(True) # plt.ylabel("-phix*lambda_gamma") # plt.show() # # plt.plot(tPlot[ind1:ind2],dlam[ind1:ind2,3]-errQx[ind1:ind2,3],'m') # plt.grid(True) # plt.ylabel("-phix*lambda_m") # plt.show() print("\nBlue: dLambda/dt; Black: -phix*lam") plt.plot(tPlot[ind1:ind2], dlam[ind1:ind2, 0]) plt.plot(tPlot[ind1:ind2], dlam[ind1:ind2, 0] - errQx[ind1:ind2, 0], 'k') plt.grid(True) plt.ylabel("z_h") plt.show() plt.plot(tPlot[ind1:ind2], dlam[ind1:ind2, 1]) plt.plot(tPlot[ind1:ind2], dlam[ind1:ind2, 1] - errQx[ind1:ind2, 1], 'k') plt.grid(True) plt.ylabel("z_V") plt.show() plt.plot(tPlot[ind1:ind2], dlam[ind1:ind2, 2]) plt.plot(tPlot[ind1:ind2], dlam[ind1:ind2, 2] - errQx[ind1:ind2, 2], 'k') plt.grid(True) plt.ylabel("z_gamma") plt.show() plt.plot(tPlot[ind1:ind2], dlam[ind1:ind2, 3]) plt.plot(tPlot[ind1:ind2], dlam[ind1:ind2, 3] - errQx[ind1:ind2, 3], 'k') plt.grid(True) plt.ylabel("z_m") plt.show() return Q
def rest(sizes, x, u, pi, t, constants, boundary, restrictions): print("In rest.") P0 = calcP(sizes, x, u, pi, constants, boundary, restrictions) print("P0 =", P0) # get sizes N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] q = sizes['q'] print("Calc phi...") # calculate phi and psi phi = calcPhi(sizes, x, u, pi, constants, restrictions) print("Calc psi...") psi = calcPsi(sizes, x, boundary) # aux: phi - dx/dt aux = phi.copy() aux -= ddt(sizes, x) # get gradients print("Calc grads...") Grads = calcGrads(sizes, x, u, pi, constants, restrictions) dt = Grads['dt'] phix = Grads['phix'] phiu = Grads['phiu'] phip = Grads['phip'] fx = Grads['fx'] psix = Grads['psix'] psip = Grads['psip'] print("Preparing matrices...") psixTr = psix.transpose() fxInv = fx.copy() phixInv = phix.copy() phiuTr = numpy.empty((N, m, n)) phipTr = numpy.empty((N, p, n)) psipTr = psip.transpose() for k in range(N): fxInv[k, :] = fx[N - k - 1, :] phixInv[k, :, :] = phix[N - k - 1, :, :].transpose() phiuTr[k, :, :] = phiu[k, :, :].transpose() phipTr[k, :, :] = phip[k, :, :].transpose() mu = numpy.zeros(q) # Matrix for linear system involving k's M = numpy.ones((q + 1, q + 1)) # column vector for linear system involving k's [eqs (88-89)] col = numpy.zeros(q + 1) col[0] = 1.0 # eq (88) col[1:] = -psi # eq (89) arrayA = numpy.empty((q + 1, N, n)) arrayB = numpy.empty((q + 1, N, m)) arrayC = numpy.empty((q + 1, p)) arrayL = arrayA.copy() arrayM = numpy.empty((q + 1, q)) print("Beginning loop for solutions...") for i in range(q + 1): mu = 0.0 * mu if i < q: mu[i] = 1.0 # integrate equation (75-2) backwards auxLamInit = -psixTr.dot(mu) auxLam = odeint(calcLamDotRest, auxLamInit, t, args=(t, phixInv)) # equation for Bi (75-3) B = numpy.empty((N, m)) lam = auxLam.copy() for k in range(N): lam[k, :] = auxLam[N - k - 1, :] B[k, :] = phiuTr[k, :, :].dot(lam[k, :]) # plt.plot(t,lam) # plt.grid(True) # plt.xlabel("t") # plt.ylabel("lambda") # plt.show() # equation for Ci (75-4) C = numpy.zeros(p) for k in range(1, N - 1): C += phipTr[k, :, :].dot(lam[k, :]) C += .5 * (phipTr[0, :, :].dot(lam[0, :])) C += .5 * (phipTr[N - 1, :, :].dot(lam[N - 1, :])) C *= dt C -= -psipTr.dot(mu) print("Integrating ODE for A [i = " + str(i) + "] ...") # integrate equation for A: A = odeint(calcADotRest, numpy.zeros(n), t, args=(t, phix, phiu, phip, B, C, aux)) # store solution in arrays arrayA[i, :, :] = A arrayB[i, :, :] = B arrayC[i, :] = C arrayL[i, :, :] = lam arrayM[i, :] = mu # Matrix for linear system (89) M[1:, i] = psix.dot(A[N - 1, :]) M[1:, i] += psip.dot(C) #psip * C # # Calculations of weights k: K = numpy.linalg.solve(M, col) print("K =", K) # summing up linear combinations A = 0.0 * A B = 0.0 * B C = 0.0 * C lam = 0.0 * lam mu = 0.0 * mu for i in range(q + 1): A += K[i] * arrayA[i, :, :] B += K[i] * arrayB[i, :, :] C += K[i] * arrayC[i, :] lam += K[i] * arrayL[i, :, :] mu += K[i] * arrayM[i, :] # alfa = 1.0#2.0# print("Calculating step...") alfa = calcStepRest(x, u, p, A, B, C, constants, boundary, restrictions) nx = x + alfa * A nu = u + alfa * B np = pi + alfa * C # while calcP(sizes,nx,nu,np) > P0: # alfa *= .8#.5 # nx = x + alfa * A # nu = u + alfa * B # np = pi + alfa * C # print("alfa =",alfa) # incorporation of A, B into the solution # x += alfa * A # u += alfa * B print("Leaving rest with alfa =", alfa) return nx, nu, np, lam, mu
def rest(sizes, x, u, pi, t, constants, boundary, restrictions): print("\nIn rest.") # get sizes N = sizes['N'] n = sizes['n'] m = sizes['m'] p = sizes['p'] q = sizes['q'] print("Calc phi...") # calculate phi and psi phi = calcPhi(sizes, x, u, pi, constants, restrictions) print("Calc psi...") psi = calcPsi(sizes, x, boundary) # aux: phi - dx/dt aux = phi - ddt(sizes, x) # get gradients print("Calc grads...") Grads = calcGrads(sizes, x, u, pi, constants, restrictions) dt = Grads['dt'] phix = Grads['phix'] phiu = Grads['phiu'] phip = Grads['phip'] fx = Grads['fx'] psix = Grads['psix'] psip = Grads['psip'] print("Preparing matrices...") psixTr = psix.transpose() fxInv = fx.copy() phixInv = phix.copy() phiuTr = numpy.empty((N, m, n)) phipTr = numpy.empty((N, p, n)) psipTr = psip.transpose() for k in range(N): fxInv[k, :] = fx[N - k - 1, :] phixInv[k, :, :] = phix[N - k - 1, :, :].transpose() phiuTr[k, :, :] = phiu[k, :, :].transpose() phipTr[k, :, :] = phip[k, :, :].transpose() mu = numpy.zeros(q) # Matrix for linear system involving k's M = numpy.ones((q + 1, q + 1)) # column vector for linear system involving k's [eqs (88-89)] col = numpy.zeros(q + 1) col[0] = 1.0 # eq (88) col[1:] = -psi # eq (89) arrayA = numpy.empty((q + 1, N, n)) arrayB = numpy.empty((q + 1, N, m)) arrayC = numpy.empty((q + 1, p)) arrayL = arrayA.copy() arrayM = numpy.empty((q + 1, q)) optPlot = dict() print("Beginning loop for solutions...") for i in range(q + 1): mu = 0.0 * mu if i < q: mu[i] = 1.0 # integrate equation (75-2) backwards auxLamInit = -psixTr.dot(mu) auxLam = odeint(calcLamDotRest, auxLamInit, t, args=(t, phixInv)) # equation for Bi (75-3) B = numpy.empty((N, m)) lam = 0 * x for k in range(N): lam[k, :] = auxLam[N - k - 1, :] B[k, :] = phiuTr[k, :, :].dot(lam[k, :]) while B.max() > numpy.pi or B.min() < -numpy.pi: lam *= .1 mu *= .1 B *= .1 print("mu =", mu) # equation for Ci (75-4) C = numpy.zeros(p) for k in range(1, N - 1): C += phipTr[k, :, :].dot(lam[k, :]) C += .5 * (phipTr[0, :, :].dot(lam[0, :])) C += .5 * (phipTr[N - 1, :, :].dot(lam[N - 1, :])) C *= dt C -= -psipTr.dot(mu) optPlot['mode'] = 'states:Lambda' #plotSol(sizes,t,lam,B,C,constants,restrictions,optPlot) print("Integrating ODE for A [" + str(i) + "/" + str(q) + "] ...") # integrate equation for A: A = odeint(calcADotRest, numpy.zeros(n), t, args=(t, phix, phiu, phip, B, C, aux)) else: # integrate equation (75-2) backwards lam *= 0.0 # equation for Bi (75-3) B *= 0.0 # equation for Ci (75-4) C *= 0.0 print("Integrating ODE for A [" + str(i) + "/" + str(q) + "] ...") # integrate equation for A: A = odeint(calcADotOdeRest, numpy.zeros(n), t, args=(t, phix, aux)) # # store solution in arrays arrayA[i, :, :] = A arrayB[i, :, :] = B arrayC[i, :] = C arrayL[i, :, :] = lam arrayM[i, :] = mu optPlot['mode'] = 'var' #plotSol(sizes,t,A,B,C,constants,restrictions,optPlot) # Matrix for linear system (89) M[1:, i] = psix.dot(A[N - 1, :]) + psip.dot(C) # # Calculations of weights k: K = numpy.linalg.solve(M, col) print("K =", K) # summing up linear combinations A = 0.0 * A B = 0.0 * B C = 0.0 * C lam = 0.0 * lam mu = 0.0 * mu for i in range(q + 1): A += K[i] * arrayA[i, :, :] B += K[i] * arrayB[i, :, :] C += K[i] * arrayC[i, :] lam += K[i] * arrayL[i, :, :] mu += K[i] * arrayM[i, :] optPlot['mode'] = 'var' plotSol(sizes, t, A, B, C, constants, restrictions, optPlot) print("Calculating step...") alfa = calcStepRest(sizes, t, x, u, pi, A, B, C, constants, boundary, restrictions) nx = x + alfa * A nu = u + alfa * B np = pi + alfa * C print("Leaving rest with alfa =", alfa) return nx, nu, np, lam, mu
@author: levi """ import numpy import matplotlib.pyplot as plt from prob_rocket_sgra import declProb, calcGrads, calcPhi from sgra_simple_rocket_alt import calcP opt = dict() opt['initMode'] = 'extSol'#'default'#'extSol' # declare problem: sizes,t,x0,u0,pi0,lam,mu,tol,constants,boundary,restrictions = declProb(opt) phi0 = calcPhi(sizes,x0,u0,pi0,constants,restrictions) calcP(sizes,x0,u0,pi0,constants,boundary,restrictions,mustPlot=True) Grads = calcGrads(sizes,x0,u0,pi0,constants,restrictions) phix = Grads['phix'] N = sizes['N'] n = sizes['n'] phixNum = phix.copy() E = numpy.zeros((n,N,n)) #for i in range(N): # for j in range(n): # E[j,i,j] = 1.0 delta = numpy.array([1e-6,1e-7,1e-8,1e-6]) for j in range(n):