Exemple #1
0
    def test__example_1_2(self):

        has_kj = Discrete.from_probs(data={
            'yes': 1e-5,
            'no': 1 - 1e-5
        },
                                     variables='has_kj')
        self.assertEqual(1e-5, has_kj.p(has_kj='yes'))
        self.assertEqual(1 - 1e-5, has_kj.p(has_kj='no'))
        eats_hbs__given__has_kj = Conditional.from_probs(
            data={
                ('yes', 'yes'): 0.9,
                ('no', 'yes'): 0.1
            },
            joint_variables='eats_hbs',
            conditional_variables='has_kj')
        eats_hbs = Discrete.from_probs(data={
            'yes': 0.5,
            'no': 0.5
        },
                                       variables='eats_hbs')
        # 1
        has_kj__given__eats_hbs = eats_hbs__given__has_kj * has_kj / eats_hbs
        self.assertEqual(
            1.8e-5, has_kj__given__eats_hbs.p(has_kj='yes', eats_hbs='yes'))
        # 2
        eats_hbs = Discrete.from_probs(data={
            'yes': 0.001,
            'no': 0.999
        },
                                       variables='eats_hbs')
        has_kj__given__eats_hbs = eats_hbs__given__has_kj * has_kj / eats_hbs
        self.assertEqual(
            9 / 1000, has_kj__given__eats_hbs.p(has_kj='yes', eats_hbs='yes'))
Exemple #2
0
    def test__example_1_3(self):

        butler = Discrete.from_probs(data={
            'yes': 0.6,
            'no': 0.4
        },
                                     variables='butler')
        maid = Discrete.from_probs(data={
            'yes': 0.2,
            'no': 0.8
        },
                                   variables='maid')
        butler__and__maid = butler * maid
        knife__given__butler__and__maid = Conditional.from_probs(
            data={
                ('yes', 'no', 'no'): 0.3,
                ('yes', 'no', 'yes'): 0.2,
                ('yes', 'yes', 'no'): 0.6,
                ('yes', 'yes', 'yes'): 0.1,
                ('no', 'no', 'no'): 0.7,
                ('no', 'no', 'yes'): 0.8,
                ('no', 'yes', 'no'): 0.4,
                ('no', 'yes', 'yes'): 0.9,
            },
            joint_variables='knife_used',
            conditional_variables=['butler', 'maid'])
        butler__and__maid__and__knife = (knife__given__butler__and__maid *
                                         butler__and__maid)
        butler__given__knife = butler__and__maid__and__knife.given(
            knife_used='yes').p(butler='yes')
        self.assertAlmostEqual(0.728, butler__given__knife, 3)
Exemple #3
0
    def test__example_1_4(self):

        occupied__given__alice__and__bob = Conditional.from_probs(
            {
                (True, False, False): 1,
                (True, False, True): 1,
                (True, True, False): 1,
                (True, True, True): 0,
            },
            joint_variables='occupied',
            conditional_variables=['alice', 'bob'])
        alice__and__bob = Discrete.from_probs(
            {
                (False, False): 0.25,
                (False, True): 0.25,
                (True, False): 0.25,
                (True, True): 0.25,
            },
            variables=['alice', 'bob'])
        alice__and__bob__and__occupied = (occupied__given__alice__and__bob *
                                          alice__and__bob)
        self.assertEqual(
            1,
            alice__and__bob__and__occupied.given(alice=True,
                                                 occupied=True).p(bob=False))
Exemple #4
0
    def setUp(self) -> None:

        self.education = Discrete.from_counts(
            data={
                ('Male', 'Never finished high school'): 112,
                ('Male', 'High school'): 231,
                ('Male', 'College'): 595,
                ('Male', 'Graduate school'): 242,
                ('Female', 'Never finished high school'): 136,
                ('Female', 'High school'): 189,
                ('Female', 'College'): 763,
                ('Female', 'Graduate school'): 172,
            },
            variables=['gender', 'highest_education'])
        self.education__total = 112 + 231 + 595 + 242 + 136 + 189 + 763 + 172
        self.total__high_school = 231 + 189

        self.coin_dist = Discrete.from_probs(
            data={
                ('H', 'H', 1, 1): 0.25,
                ('H', 'T', 1, 0): 0.25,
                ('T', 'H', 1, 0): 0.25,
                ('T', 'T', 0, 1): 0.25
            },
            variables=['coin_1', 'coin_2', 'x', 'y'])
Exemple #5
0
    def test_max_numeric(self):

        discrete = Discrete.from_probs(data={
            0: 0.7,
            1000: 0.2,
            2000: 0.1
        },
                                       variables='a')
        self.assertAlmostEqual(2000, discrete.max())
        discrete_2 = Discrete.from_probs(data={
            0: 0.7,
            1000: 0.3,
            2000: 0
        },
                                         variables='a')
        self.assertAlmostEqual(1000, discrete_2.max())
Exemple #6
0
    def test_max_categorical(self):

        discrete = Discrete.from_probs(data={
            'a': 0.7,
            'b': 0.2,
            'c': 0.1
        },
                                       variables='x')
        self.assertRaises(TypeError, discrete.max)
Exemple #7
0
    def test_mode_1d_numeric(self):

        discrete = Discrete.from_probs(data={
            0: 0.7,
            1000: 0.2,
            2000: 0.1
        },
                                       variables='a')
        self.assertEqual(0, discrete.mode())
    def setUp(self) -> None:

        # cookies
        self.bowl_1_and_chocolate = 0.125
        self.bowl_1_and_vanilla = 0.375
        self.bowl_2_and_chocolate = 0.25
        self.bowl_2_and_vanilla = 0.25
        cookie_data = TestChapter01.make_cookies_observations()
        self.cookies = Discrete.from_observations(cookie_data)
        self.vanilla = self.cookies.p(flavor='vanilla')
        self.vanilla__bowl_1 = self.cookies.given(bowl='bowl 1').p(
            flavor='vanilla')
        self.vanilla__bowl_2 = self.cookies.given(bowl='bowl 2').p(
            flavor='vanilla')
        self.bowl = Discrete.from_probs({
            'bowl 1': 0.5,
            'bowl 2': 0.5
        },
                                        variables=['bowl'])
        self.bowl_1 = self.bowl.p(bowl='bowl 1')
        self.bowl_2 = self.bowl.p(bowl='bowl 2')

        # m & m's
        self.mix_1994 = Discrete.from_probs(
            {
                'brown': 0.3,
                'yellow': 0.2,
                'red': 0.2,
                'green': 0.1,
                'orange': 0.1,
                'tan': 0.1
            },
            variables='color')
        self.mix_1996 = Discrete.from_probs(
            {
                'blue': 0.24,
                'green': 0.2,
                'orange': 0.16,
                'yellow': 0.14,
                'red': 0.13,
                'brown': 0.13
            },
            variables='color')
        self.bag = Discrete.from_probs({1994: 0.5, 1996: 0.5}, variables='bag')
Exemple #9
0
    def test_mean_numeric(self):

        discrete = Discrete.from_probs(data={
            0: 0.7,
            1000: 0.2,
            2000: 0.1
        },
                                       variables='a')
        self.assertAlmostEqual(0 * 0.7 + 1000 * 0.2 + 2000 * 0.1,
                               discrete.mean())
Exemple #10
0
    def test_from_probs__with_dict(self):

        bowl = Discrete.from_probs({
            'bowl 1': 0.5,
            'bowl 2': 0.5
        },
                                   variables=['bowl'])
        self.assertIsInstance(bowl, Discrete)
        mix_1994 = Discrete.from_probs(
            {
                'brown': 0.3,
                'yellow': 0.2,
                'red': 0.2,
                'green': 0.1,
                'orange': 0.1,
                'tan': 0.1
            },
            variables='color')
        self.assertIsInstance(mix_1994, Discrete)
Exemple #11
0
    def test__1_3_1(self):

        t = Discrete.from_observations(data=DataFrame({
            't': [s_a + s_b for s_a, s_b in product(range(1, 7), range(1, 7))]
        }))
        s_a__s_b = Discrete.from_probs(data={
            (a, b): 1 / 36
            for a, b in product(range(1, 7), range(1, 7))
        },
                                       variables=['s_a', 's_b'])
        t_9__given__s_a__s_b = Conditional.from_probs(
            data={(9, a, b): int(a + b == 9)
                  for a, b in product(range(1, 7), range(1, 7))},
            joint_variables=['t'],
            conditional_variables=['s_a', 's_b'])
        t_9__s_a__s_b = t_9__given__s_a__s_b * s_a__s_b
        t_9 = t_9__s_a__s_b / t.p(t=9)
        for s_a, s_b in product(range(1, 6), range(1, 6)):
            self.assertEqual(t_9.p(s_a=s_a, s_b=s_b),
                             0.25 if s_a + s_b == 9 else 0)