Exemple #1
0
def test_shap_rfe_randomized_search_cols_to_keep(X, y, capsys):
    """
    Test with ShapRFECV with column to keep param.
    """
    clf = DecisionTreeClassifier(max_depth=1)
    param_grid = {"criterion": ["gini"], "min_samples_split": [1, 2]}
    search = RandomizedSearchCV(clf, param_grid, cv=2, n_iter=2)
    with pytest.warns(None) as record:

        shap_elimination = ShapRFECV(search,
                                     step=0.8,
                                     cv=2,
                                     scoring="roc_auc",
                                     n_jobs=4,
                                     random_state=1)
        report = shap_elimination.fit_compute(
            X, y, columns_to_keep=["col_2", "col_3"])

    assert shap_elimination.fitted
    shap_elimination._check_if_fitted()

    assert report.shape[0] == 2
    reduced_feature_set = set(
        shap_elimination.get_reduced_features_set(num_features=2))
    assert reduced_feature_set == set(["col_2", "col_3"])

    _ = shap_elimination.plot(show=False)

    # Ensure that number of warnings was at least 2 for the verbose (2 generated by probatus + possibly more by SHAP)
    assert len(record) >= 2

    # Check if there is any prints
    out, _ = capsys.readouterr()
    assert len(out) == 0
Exemple #2
0
def test_shap_rfe_randomized_search(X, y, capsys):

    clf = DecisionTreeClassifier(max_depth=1)
    param_grid = {'criterion': ['gini'], 'min_samples_split': [1, 2]}
    search = RandomizedSearchCV(clf, param_grid, cv=2, n_iter=2)
    with pytest.warns(None) as record:

        shap_elimination = ShapRFECV(search,
                                     step=0.8,
                                     cv=2,
                                     scoring='roc_auc',
                                     n_jobs=4,
                                     verbose=150)
        report = shap_elimination.fit_compute(X, y)

    assert shap_elimination.fitted == True
    shap_elimination._check_if_fitted()

    assert report.shape[0] == 2
    assert shap_elimination.get_reduced_features_set(1) == ['col_3']

    ax1 = shap_elimination.plot(show=False)

    # Ensure that number of warnings was at least 2 for the verbose (2 generated by probatus + possibly more by SHAP)
    assert len(record) >= 2

    # Check if there is any prints
    out, _ = capsys.readouterr()
    assert len(out) > 0
Exemple #3
0
def test_complex_dataset(complex_data, complex_lightgbm):
    """
    Test on complex dataset.
    """
    X, y = complex_data

    param_grid = {
        "n_estimators": [5, 7, 10],
        "num_leaves": [3, 5, 7, 10],
    }
    search = RandomizedSearchCV(complex_lightgbm, param_grid, n_iter=1)

    shap_elimination = ShapRFECV(clf=search, step=1, cv=10, scoring="roc_auc", n_jobs=3, verbose=50)
    with pytest.warns(None) as record:
        report = shap_elimination.fit_compute(X, y)

    assert report.shape[0] == X.shape[1]

    assert len(record) >= 2