def run_tests():

    import problem_unittests as t

    t.test_folder_path(cifar10_dataset_folder_path)
    t.test_normalize(normalize)
    t.test_one_hot_encode(one_hot_encode)
    t.test_nn_image_inputs(neural_net_image_input)
    t.test_nn_label_inputs(neural_net_label_input)
    t.test_nn_keep_prob_inputs(neural_net_keep_prob_input)
    t.test_con_pool(conv2conv2d_maxpool)
    t.test_flatten(flatten)
    t.test_fully_conn(fully_conn)
    t.test_output(output)
    t.test_conv_net(conv_net)
    t.test_train_nn(train_neural_network)
    def runCifarTest(self):

        if isfile(self.floyd_cifar10_location):
            self.tar_gz_path = self.floyd_cifar10_location
        else:
            self.tar_gz_path = 'cifar-10-python.tar.gz'

        if not isfile(self.tar_gz_path):
            with DLProgress(unit='B',
                            unit_scale=True,
                            miniters=1,
                            desc='CIFAR-10 Dataset') as pbar:
                urlretrieve(self.url, self.tar_gz_path, pbar.hook)

        if not isdir(self.cifar10_dataset_folder_path):
            with tarfile.open(self.tar_gz_path) as tar:
                tar.extractall()
                tar.close()

        tests.test_folder_path(self.cifar10_dataset_folder_path, self)
Exemple #3
0

if not isfile('cifar-10-python.tar.gz'):
    with DLProgress(unit='B',
                    unit_scale=True,
                    miniters=1,
                    desc='CIFAR-10 Dataset') as pbar:
        urlretrieve('https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
                    'cifar-10-python.tar.gz', pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open('cifar-10-python.tar.gz') as tar:
        tar.extractall()
        tar.close()

tests.test_folder_path(cifar10_dataset_folder_path)

# ## Explore the Data
# The dataset is broken into batches to prevent your machine from running out of memory.  The CIFAR-10 dataset consists of 5 batches, named `data_batch_1`, `data_batch_2`, etc.. Each batch contains the labels and images that are one of the following:
# * airplane
# * automobile
# * bird
# * cat
# * deer
# * dog
# * frog
# * horse
# * ship
# * truck
#
# Understanding a dataset is part of making predictions on the data.  Play around with the code cell below by changing the `batch_id` and `sample_id`. The `batch_id` is the id for a batch (1-5). The `sample_id` is the id for a image and label pair in the batch.
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


# ## Explore the Data
# The dataset is broken into batches to prevent your machine from running out of memory.  The CIFAR-10 dataset consists of 5 batches, named `data_batch_1`, `data_batch_2`, etc.. Each batch contains the labels and images that are one of the following:
# * airplane
# * automobile
# * bird
# * cat
# * deer
# * dog
# * frog
# * horse
# * ship
# * truck
# 
Exemple #5
0
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num


if not isfile(download_link):
    with DownloadProgress(unit='B',
                          unit_scale=True,
                          miniters=1,
                          desc='File downloaded') as progress_bar:
        urlretrieve(download_link, download_folder + 'my_file.tar.gz',
                    progress_bar.hook)
tests.test_folder_path(
    download_folder)  # to test if the file downloaded properl


def main():
    given_checksum_output = urlopen(checksum_file_link).read().decode(
        'UTF-8').split()[0]
    file_checksum_output = os.popen(checksum_format + ' ' + download_folder +
                                    '/' + 'my_file.tar.gz').read().split()[0]
    if file_checksum_output == given_checksum_output:
        print(
            'Congratulations, the file you have downloaded is identical to the source!'
        )
    else:
        print(
            'Sorry, the file you have downloaded is not identical to the source!'
        )