Exemple #1
0
def get_opt_prob(subfolder, bench_id, num_iter=None):
    '''
    get optimier and problem.

    Args:
        subfolder (str): subfolder with configuration files.
        bench_id (int): benchmark id.
        num_iter (None|int): load the data for specific iteration, None for random data.

    Return:
        climin.Minizer, Probdef: optimizer and problem.
    '''
    configfile = 'benchmarks/%s/config-sample.ini' % subfolder
    config = load_config(configfile)

    # modification to parameters
    folder = os.path.dirname(configfile)
    sys.path.insert(0, folder)
    from config import modifyconfig_and_getnn
    rbm = modifyconfig_and_getnn(config, bench_id)
    optimizer, problem = pconfig(config, rbm)

    # load saved data
    if num_iter is not None:
        data = np.load(folder + '/variables-%d%d.npy' % (bench_id, num_iter))
        problem.rbm.set_variables(data)
    return optimizer, problem
Exemple #2
0
def analyse_weights2(configfile, bench_id, num_iter):
    config = load_config(configfile)
    # folder to store data, containing config.py
    folder = os.path.dirname(configfile)
    e0 = config['hamiltonian']['EG']

    sys.path.insert(0, folder)
    from config import modifyconfig_and_getnn
    rbm = modifyconfig_and_getnn(config, bench_id)

    optimizer, problem = pconfig(config, rbm)
    h, sr, rbm, vmc = problem.hamiltonian, problem.sr, problem.rbm, problem.vmc

    # load data
    data = np.load(folder + '/variables-%d%d.npy' % (bench_id, num_iter))
    rbm.set_variables(data)

    # compute overlap
    H, e0, v0, configs = analyse_exact(h, do_printsign=False)
    vec = rbm.tovec(mag=h.mag)
    vec = vec / np.linalg.norm(vec)
    overlap = abs(vec.T.conj().dot(v0))
    print('overlap = %s' % overlap)

    # show weights in conv layers.
    keys = [1, 2, 4, 5, 6, 7]
    # configs, config_indexer = h.get_config_table()
    #configs = np.array([[1,-1]*(h.nsite//2)])
    #configs = np.array([[1,-1,-1,1]*(h.nsite//4)])

    plt.ion()
    num_try = 100
    for i in range(num_try):
        config = configs[np.random.choice(len(configs))]
        plt.clf()
        ys = rbm.forward(config, full_output=True)
        for ik, k in enumerate(keys):
            ax = plt.subplot('61%d' % (ik + 1),
                             sharex=ax if ik < 4 and ik > 0 else None)
            if k == 7:
                vmin, vmax = 0, 5e5
            elif k == 5:
                vmin, vmax = 0, 2e5
            elif k == 6:
                vmin, vmax = 0, 5e5
            elif k == 4:
                vmin, vmax = 0, 5
            else:
                vmin, vmax = None, None
            if ik < 2:
                plt.pcolor(np.atleast_2d(np.squeeze(ys[k]).real),
                           vmin=vmin,
                           vmax=vmax)
            else:
                plt.pcolor(np.atleast_2d(np.squeeze(abs(ys[k]))),
                           vmin=vmin,
                           vmax=vmax)
            plt.colorbar()
        plt.pause(0.01)
        pdb.set_trace()
Exemple #3
0
    def bverr(self, subfolder, bench_id, extension='png'):
        '''show energy error function.'''
        # get configuration and foler
        configfile = 'benchmarks/%s/config-sample.ini' % subfolder
        folder = os.path.dirname(configfile)
        config = load_config(configfile)

        # modification to parameters
        sys.path.insert(0, folder)
        from config import modifyconfig_and_getnn
        rbm = modifyconfig_and_getnn(config, bench_id)

        EG = config['hamiltonian']['EG']
        if EG is None:
            h = load_hamiltonian(model='J1J2',
                                 J1=1,
                                 J2=config['hamiltonian']['J2'],
                                 size=config['hamiltonian']['size'])
            H, EG, v, configs = analyse_exact(h, do_printsign=False, num_eng=1)
        context = DShow(
            (5, 3.5),
            filename="notes/img/ERRL-%s-%s.%s" %
            (subfolder, bench_id,
             extension)) if extension is not '-' else contextlib.ExitStack()
        with context:
            show_el(datafiles=['%s/el-%i.dat' % (folder, bench_id)],
                    nsite=np.prod(config['hamiltonian']['size']),
                    EG=EG,
                    legends=['id = %s' % bench_id],
                    show_err=True,
                    xlogscale=False)
Exemple #4
0
    def bve(self, subfolder, bench_id, extension='png'):
        '''show energy function.'''
        # get configuration and foler
        configfile = 'benchmarks/%s/config-sample.ini' % subfolder
        folder = os.path.dirname(configfile)
        config = load_config(configfile)

        # modification to parameters
        sys.path.insert(0, folder)
        from config import modifyconfig_and_getnn
        rbm = modifyconfig_and_getnn(config, bench_id)

        EG = config['hamiltonian']['EG']
        context = DShow(
            (5, 3.5),
            filename="notes/img/EL-%s-%s.%s" %
            (subfolder, bench_id,
             extension)) if extension is not '-' else contextlib.ExitStack()
        with context:
            show_el(datafiles=['%s/el-%i.dat' % (folder, bench_id)],
                    nsite=np.prod(config['hamiltonian']['size']),
                    EG=config['hamiltonian']['EG'],
                    legends=['id = %s' % bench_id],
                    show_err=False,
                    xlogscale=True)
Exemple #5
0
def show_kernel_bentch(configfile, bentch_id):
    config = load_config(configfile)
    # folder to store data, containing config.py
    folder = os.path.dirname(configfile)

    # modification to parameters
    sys.path.insert(0, folder)
    from config import modifyconfig_and_getnn
    rbm = modifyconfig_and_getnn(config, bentch_id)
    show_kernel(rbm)
Exemple #6
0
def analyse_poly(configfile, num_iter, bench_id_list):
    config = load_config(configfile)
    # folder to store data, containing config.py
    folder = os.path.dirname(configfile)
    e0 = config['hamiltonian']['EG']
    labels = [
        'polynomial', 'legendre', 'hermite', 'chebyshev', 'laguerre',
        'hermiteE'
    ]
    legends = []

    sys.path.insert(0, folder)
    from config import modifyconfig_and_getnn
    plt.ion()
    for ib, (bench_id, label) in enumerate(zip(bench_id_list, labels)):
        rbm = modifyconfig_and_getnn(config, bench_id)

        optimizer, problem = pconfig(config, rbm)
        h, sr, rbm, vmc = problem.hamiltonian, problem.sr, problem.rbm, problem.vmc
        if ib == 0:
            H, e0, v0, configs = analyse_exact(h, do_printsign=False)

        # load data
        data = np.load(folder + '/variables-%d%d.npy' % (bench_id, num_iter))
        rbm.set_variables(data)

        # compute overlap
        vec = rbm.tovec(mag=h.mag)
        vec = vec / np.linalg.norm(vec)
        overlap = abs(vec.T.conj().dot(v0))
        print('overlap = %s' % overlap)

        # show weights in conv layers.
        for layer in rbm.layers:
            if hasattr(layer, 'kernel_dict'):
                polylayer = layer
        data = polylayer.get_variables()
        plt.plot(np.real(data))
        legends.append('%s (%.4f)' % (label, overlap))
    plt.axhline(y=0, ls='--', color='k')
    plt.legend(legends)
    pdb.set_trace()
    plt.savefig('notes/img/polyweight.png')
Exemple #7
0
    def benchmark(self, configfile, bench_id, interactive=False):
        from problems import load_config
        config = load_config(configfile)
        folder = os.path.dirname(configfile)

        # modification to parameters
        sys.path.insert(0, folder)
        from config import modifyconfig_and_getnn
        rbm = modifyconfig_and_getnn(config, bench_id)

        n = config['mpi']['num_core']

        logfile = '%s/log-%s.log' % (folder, bench_id)
        options = ' '.join(['%s' % item for item in [configfile, bench_id]])
        exec_code = 'python benchmark.py %s' % (options, )
        if not interactive:
            exec_code = 'nohup mpirun -n %s %s > %s &' % (n, exec_code,
                                                          logfile)
        print('Excuting: %s' % exec_code)
        os.system(exec_code)
Exemple #8
0
def main():
    from monitors import Print_eng_with_exact, print_eng, show_wf, DumpNetwork
    configfile, bench_id = sys.argv[1:]
    np.random.seed(3)

    dconfig = load_config(configfile)
    # folder to store data, containing config.py
    folder = os.path.dirname(configfile)
    # modification to parameters
    sys.path.insert(0, folder)
    from config import modifyconfig_and_getnn
    rbm = modifyconfig_and_getnn(dconfig, int(bench_id))
    e0 = dconfig['hamiltonian']['EG']

    import datetime
    print(datetime.datetime.now())
    run_benchmark(dconfig, rbm, int(bench_id),\
            monitors = [
                Print_eng_with_exact(e0),\
                DumpNetwork(folder=os.path.dirname(configfile),token=bench_id,step=1000)\
                ], folder=folder, viz=False)
Exemple #9
0
def analyse_weights(configfile, bench_id, num_iter):
    config = load_config(configfile)
    # folder to store data, containing config.py
    folder = os.path.dirname(configfile)
    e0 = config['hamiltonian']['EG']

    sys.path.insert(0, folder)
    from config import modifyconfig_and_getnn
    rbm = modifyconfig_and_getnn(config, bench_id)

    optimizer, problem = pconfig(config, rbm)
    h, sr, rbm, vmc = problem.hamiltonian, problem.sr, problem.rbm, problem.vmc

    # load data
    data = np.load(folder + '/variables-%d%d.npy' % (bench_id, num_iter))
    rbm.set_variables(data)

    # compute overlap
    H, e0, v0, configs = analyse_exact(h, do_printsign=False)
    vec = rbm.tovec(mag=h.mag)
    vec = vec / np.linalg.norm(vec)
    overlap = abs(vec.T.conj().dot(v0))
    print('overlap = %s' % overlap)

    # show weights in conv layers.
    convlayer = rbm.layers[2]
    data = convlayer.weight  #.sum(axis=0, keepdims=True)
    plt.ion()
    plt.imshow(np.real(
        abs(data).sum(axis=0,
                      keepdims=True).reshape([-1,
                                              convlayer.weight.shape[-1]])),
               vmin=-0.5,
               vmax=0.5)
    nfo, nfi = data.shape[:2]
    poses = range(nfo * nfi)
    plt.yticks(poses, [(pos // nfi, pos % nfi) for pos in poses])
    plt.ylabel('out, in')
    plt.colorbar()
    pdb.set_trace()
Exemple #10
0
def analyse_polycurve(configfile,
                      num_iter,
                      bench_id_list,
                      show_var=False,
                      token=''):
    config = load_config(configfile)
    # folder to store data, containing config.py
    folder = os.path.dirname(configfile)
    e0 = config['hamiltonian']['EG']
    legends = []

    sys.path.insert(0, folder)
    from config import modifyconfig_and_getnn
    x = np.linspace(-2, 2, 200)
    plt.ion()
    for bench_id in bench_id_list:
        rbm = modifyconfig_and_getnn(config, bench_id)

        # show weights in conv layers.
        for nit in np.atleast_1d(num_iter):
            rbm_var = np.load(folder + '/variables-%d%d.npy' % (bench_id, nit))
            rbm.set_variables(rbm_var)
            for layer in rbm.layers:
                if hasattr(layer, 'kernel_dict'):
                    polylayer = layer
                    legends.append(layer.kernel + '-%d' % nit)
            if show_var:
                data = polylayer.get_variables()
                plt.plot(data.real)
            else:
                data = polylayer.forward(x)
                plt.plot(x, data.real)
    plt.legend(legends)
    #plt.ylim(-20,20)
    pdb.set_trace()
    if show_var:
        plt.savefig('notes/img/polyvar-%s.png' % token)
    else:
        plt.savefig('notes/img/polycurve-%s.png' % token)
Exemple #11
0
def show_bench44dncr():
    '''Compare complex and real.'''
    token = 'dn'
    ids = [1, 6, 7]
    show_err = True
    plt.ion()
    from problems import load_config
    folder = '../benchmarks/wanglei4dn'
    config = load_config(folder + '/config-sample.ini')
    legends = []
    for id in ids:
        for version in ['c', 'r']:
            show_el(datafiles=[
                folder + '/el-%i%s.dat' % (id, 'c' if version == 'c' else '')
            ],
                    EG=config['hamiltonian']['EG'],
                    show_err=show_err,
                    xlogscale=not show_err,
                    smooth_step=20)
            legends.append('%s-%s' % (version, id + 1))
    plt.legend(legends)
    plt.ylim(1e-5, 1)
    pdb.set_trace()
    plt.savefig('img/errcr-%s.png' % token)