Exemple #1
0
def single_run(city, cicnt=20, wl=100, wt=20, n_feature=128, new_run=False):
    # city = "Brightkite"# ny la london Gowalla Brightkite
    # cicnt = 20

    folder_setup(city)
    checkin, friends = data_process(city, cicnt)

    ul_graph, lu_graph = ul_graph_build(checkin, 'locid')

    model_name = str(cicnt) + '_locid'
    print(model_name)

    walk_len, walk_times = 100, 20  # maximal 100 walk_len, 20 walk_times

    print('walking')
    if new_run:
        para_ul_random_batch(city, model_name, checkin.uid.unique(), ul_graph,
                             lu_graph, walk_len, walk_times)
    print('walk done')

    print('emb training')
    emb_train(city, model_name, wl, wt, n_feature)
    print('emb training done')

    feature_construct(city, model_name, friends, wl, wt, n_feature)
    unsuper_friends_predict(city, model_name, wl, wt, n_feature)
Exemple #2
0
def single_run(city, cicnt, ratio):
    # ratio = int(sys.argv[3])# 10 20 30 40
    ratio = ratio * 1.0 / 100

    folder_setup(city)
    checkin, friends = data_process(city, cicnt)

    defense_name = str(cicnt) + '_hiding_' + str(int(ratio * 100))
    print(defense_name)

    checkin = para_hiding(city, defense_name, checkin, ratio)

    ul_graph, lu_graph = ul_graph_build(checkin, 'locid')

    model_name = str(cicnt) + '_locid_hiding_' + str(int(ratio * 100))
    print(model_name)

    walk_len, walk_times = 100, 20  # maximal 100 walk_len, 20 walk_times

    print('walking')
    para_ul_random_walk(city, model_name, checkin.uid.unique(), ul_graph,
                        lu_graph, walk_len, walk_times)
    print('walk done')

    print('emb training')
    emb_train(city, model_name)
    print('emb training done')

    feature_construct(city, model_name, friends)
    unsuper_friends_predict(city, model_name)
Exemple #3
0
def single_ex_run(city, cicnt):

    folder_setup(city)
    checkin, friends = data_process(city, cicnt)

    defense_name = str(cicnt) + '_ex'
    print(defense_name)

    checkin = extreme_balance(city, defense_name, checkin)

    ul_graph, lu_graph = ul_graph_build(checkin, 'locid')

    model_name = str(cicnt) + '_locid_ex'
    print(model_name)

    walk_len, walk_times = 100, 20  # maximal 100 walk_len, 20 walk_times

    print('walking')
    para_ul_random_batch(city, model_name, checkin.uid.unique(), ul_graph,
                         lu_graph, walk_len, walk_times)
    print('walk done')

    print('emb training')
    emb_train(city, model_name)
    print('emb training done')

    feature_construct(city, model_name, friends)
    unsuper_friends_predict(city, model_name)
Exemple #4
0
def batch_random_walk(num_user, num_location):
    city = 'workload_' + str(num_user) + '_' + str(num_location)
    folder_setup(city)
    cicnt = 20
    checkin, friends = data_process(city, cicnt)

    ul_graph, lu_graph = ul_graph_build(checkin, 'locid')

    model_name = str(cicnt) + '_locid'
    print(model_name)

    walk_len, walk_times = 50, 10  # maximal 100 walk_len, 20 walk_times

    print('walking')
    para_ul_random_batch(city, model_name, checkin.uid.unique(),
                         ul_graph, lu_graph, walk_len, walk_times)
    print('walk done')
Exemple #5
0
def single_replace(city, cicnt, ratio, step, fail_to_continue=False):
    ratio = ratio * 1.0 / 100

    folder_setup(city)
    checkin, friends = data_process(city, cicnt)

    defense_name = str(cicnt) + '_replace_' + str(int(
        ratio * 100)) + '_' + str(int(step))

    model_name = str(cicnt) + '_locid_replace_' + str(int(
        ratio * 100)) + '_' + str(int(step))

    if not fail_to_continue:
        checkin = para_replace(city, defense_name, checkin, ratio, step)
    else:
        checkin = pd.read_csv('dataset/'+ city + '/defense/' + city + \
                                              '_20_replace_'+
                              str(int(ratio * 100)) + '_' + str(int(step)) +
                              '.checkin')

    ul_graph, lu_graph = ul_graph_build(checkin, 'locid')

    walk_len, walk_times = 100, 20  # maximal 100 walk_len, 20 walk_times

    print('walking')
    if not fail_to_continue:
        para_ul_random_batch(city, model_name, checkin.uid.unique(), ul_graph,
                             lu_graph, walk_len, walk_times)
    print('walk done')

    print('emb training')
    emb_train(city, model_name)
    print('emb training done')

    feature_construct(city, model_name, friends)
    unsuper_friends_predict(city, model_name)
import sys

from process import folder_setup, data_process
from defense import para_replace
from emb import ul_graph_build, para_ul_random_walk, emb_train
from predict import feature_construct, unsuper_friends_predict

city = sys.argv[1]
cicnt = int(sys.argv[2])
ratio = int(sys.argv[3])  # 10 20 30 40
ratio = ratio * 1.0 / 100
step = int(sys.argv[4])

folder_setup(city)
checkin, friends = data_process(city, cicnt)

defense_name = str(cicnt) + '_replace_' + str(int(ratio * 100)) + '_' + str(
    int(step))

checkin = para_replace(city, defense_name, checkin, ratio, step)

ul_graph, lu_graph = ul_graph_build(checkin, 'locid')

model_name = str(cicnt) + '_locid_replace_' + str(int(
    ratio * 100)) + '_' + str(int(step))

walk_len, walk_times = 100, 20  # maximal 100 walk_len, 20 walk_times

print 'walking'
para_ul_random_walk(city, model_name, checkin.uid.unique(), ul_graph, lu_graph,\
                    walk_len, walk_times)
Exemple #7
0
import sys

from process import data_process
from utility import js_utility

city = sys.argv[1]
cicnt = int(sys.argv[2])
ratio = int(sys.argv[3])  # 10 20 30 40
ratio = ratio * 1.0 / 100
step = int(sys.argv[4])

checkin, _ = data_process(city, cicnt)

defense_name = str(cicnt) + '_replace_' + str(int(ratio * 100)) + '_' + str(
    int(step))

js_utility(city, defense_name, checkin)
Exemple #8
0
    #     classifier_hidden_layers = ''
    # else:
    #     classifier_hidden_layers = [int(i) for i in (args.classifier_hidden_layers).split(',')]
    # dropout = args.dropout
    # building_weight = args.building_weight
    # floor_weight = args.floor_weight
    # N = args.neighbours
    # scaling = args.scaling
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152
    if gpu_id >= 0:
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
    else:
        os.environ["CUDA_VISIBLE_DEVICES"] = ''
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

    [x_trainval, y_trainval, x_train, y_train, x_val, y_val, x_test, y_test, dataset_name] = data_process()
    OUTPUT_DIM = y_train.shape[1]
    INPUT_DIM = x_train.shape[1]
    # pd.DataFrame(x_train).to_csv('preprocessed_data//' + 'train' + '_' + '.csv')
    # pd.DataFrame(x_val).to_csv('preprocessed_data//' + 'val' + '_' + '.csv')
    # pd.DataFrame(x_test).to_csv('preprocessed_data//' + 'test' + '_' + '.csv')

    for dropout in [0.1]:
        #for LR_REDUCE_FACTOR in [0.05, 0.1, 0.5, 0.9]:
        for LR_REDUCE_FACTOR in [1]:
            hr_ls = []
            for SIZE in range(6, 23, 2):
                root_folder = 'd' + str(dropout) + 'f' + str(LR_REDUCE_FACTOR) + '//' + str(
                    SIZE) + 'x' + str(SIZE)
                # true_index = []
                # false_index = []