Exemple #1
0
def registration_test(register: RegistrationAlgorithm,
                      test_name: str,
                      export_number=(0, 0)):
    registration_test_folder = f'{const.REGISTRATION}/{test_name}/'
    files = collect(registration_test_folder, '.npz')
    progress = tqdm(total=len(files),
                    desc=f'Registration | {test_name} | {register.name}')
    total_error = 0
    total_check = 0
    for i, file in enumerate(files):
        data = np.load(''.join(file))
        source, target = data['test_vs'][0], data['test_vs'][1]
        rot, trnl = data['rotations'], data['translations']
        rot_, trnl_ = register(source, target)
        target_ = apply_affine(source, rot_, trnl_)
        error = mse_error(source, target_, rot, trnl)
        if np.isnan(error):
            print('error')
        total_error += min(error, 1)
        total_check += 1
        progress.update()
        progress.set_postfix(error=error,
                             average=total_error / max(1, total_check))
    print(f'testeted: {total_check} / {len(files)}')
    print(f'error: {total_error / max(1, total_check)}')
    progress.set_postfix({'error': total_error / max(1, total_check)})
    progress.close()
Exemple #2
0
 def init_prefix(prefix: str, saving_index: int, saving_folder: str):
     nonlocal saving_dict, suffix
     same_type_file = collect(saving_folder, suffix[saving_index], prefix=prefix)
     if len(same_type_file) == 0:
         saving_dict[saving_index][prefix] = 0
     else:
         last_number_file_name = same_type_file[-1][1]
         saving_dict[saving_index][prefix] = int(last_number_file_name.split('_')[1]) + 1
Exemple #3
0
 def get_taxonomy_models_paths(self):
     with open(self.join2root('taxonomy.json'), 'r') as f:
         metadata = json.load(f)
     for info in metadata:
         class_name = info['name'].split(',')[0].replace(' ', '_')
         if class_name == self.opt.tag:
             taxonomy_dir = self.join2root(info['synsetId'])
             if os.path.isdir(taxonomy_dir):
                 return files_utils.collect(taxonomy_dir, '.obj', '.off')
Exemple #4
0
    np_images = [
        render_mesh(mesh, ambient_color, light_dir) for mesh in meshes
    ]
    im = make_pretty(np_images)
    if save_path:
        save_path = files_utils.add_suffix(save_path, '.png')
        files_utils.init_folders(save_path)
        im.save(save_path)
    elif 'DISPLAY' in os.environ:
        im.show()


if __name__ == '__main__':
    meshes = [
        ''.join(path) for path in files_utils.collect(
            '/home/amir/projects/mishmesh/checkpoints/bunny_noise/inference/',
            '.obj')
    ]

    plot_mesh(
        *meshes,
        save_path=
        '/home/amir/projects/mishmesh/checkpoints/sphere_rail_noise/inference/bunnies'
    )
    # plot_mesh('/home/amir/projects/mishmesh/checkpoints/sphere_rail_noise/inference/temp15.obj',
    #           '/home/amir/projects/mishmesh/checkpoints/sphere_rail_noise/inference/temp24.obj',
    #           '/home/amir/projects/mishmesh/checkpoints/sphere_rail_noise/inference/temp24.obj',
    #           '/home/amir/projects/mishmesh/checkpoints/sphere_rail_noise/inference/temp23.obj',
    #           '/home/amir/projects/mishmesh/checkpoints/sphere_rail_noise/inference/temp44.obj',
    #           '/home/amir/projects/mishmesh/checkpoints/sphere_rail_noise/inference/temp33.obj',
    #            save_path='/home/amir/projects/mishmesh/checkpoints/sphere_rail_noise/inference/sphere_rail_bunny')