Exemple #1
0
def update_table(the_location, the_benchmark, clicks):
    if clicks % 2 == 0:
        if not all((the_benchmark, the_location)):
            the_location = location_start
            the_benchmark = bench_start
            df_perf_summary = fm.fin_met(ticker_start, the_benchmark)
        else:

            df_perf_summary = fm.fin_met(ticker_start, the_benchmark)

    else:
        df_perf_summary = fm.fin_met(tickers_bench[the_benchmark],
                                     ticker_start)

    modifed_perf_table = make_dash_table(df_perf_summary)

    modifed_perf_table.insert(
        0,
        html.Tr([
            html.Td([]),
            html.Td(['Company'], colSpan=4, style={'text-align': "center"}),
            html.Td(['Benchmark'], colSpan=4, style={'text-align': "center"})
        ],
                style={
                    'background': 'white',
                    'font-weight': '600'
                }))
    return modifed_perf_table
Exemple #2
0
def dadr(diffy):
    diffy = json.loads(diffy)
    dict_items = global_store(diffy["the_location"], diffy["the_benchmark"],
                              diffy["clicks"])
    df_perf_summary = fm.fin_met(dict_items["Benchmark"],
                                 dict_items["Company"])

    def make_dash_table(df):
        ''' Return a dash definitio of an HTML table for a Pandas dataframe '''
        table = []
        for index, row in df.iterrows():
            html_row = []
            for i in range(len(row)):
                html_row.append(html.Td([row[i]]))
            table.append(html.Tr(html_row))
        return table

    modifed_perf_table = make_dash_table(df_perf_summary)

    modifed_perf_table.insert(
        0,
        html.Tr([
            html.Td([]),
            html.Td(['Company'], colSpan=4, style={'text-align': "center"}),
            html.Td(['Benchmark'], colSpan=4, style={'text-align': "center"})
        ],
                style={
                    'background': 'white',
                    'font-weight': '600'
                }))
    return modifed_perf_table
Exemple #3
0
    diffy["first_option_target_code"]]["Company Metrics"]
dict_info_output = ext_info_dict[
    diffy["first_option_target_code"]]["Stakeholder Description"]

c_metrics_df_output_1 = ext_info_dict[
    diffy["first_option_target_code"]]["Company Metrics"]

stock_plot_desc_output, _ = describe(diffy["first_option_target_code"],
                                     diffy["first_option_bench_code"])

title_output = str(diffy["first_option_target_long_name"]) + " 4-D Report"
location_output = str(diffy["target_location_address"]) + " Location"
profile_output = str(
    diffy["first_option_target_location_small_name"]) + " Profile"

df_perf_summary_output = fm.fin_met(diffy["first_option_bench_code"],
                                    diffy["first_option_target_code"])

first_dict = {}
#first_dict[""]

first_dict[
    "target_location_small_drop_down_options"] = target_location_small_drop_down_options
first_dict["bench_code_drop_down_options"] = bench_code_drop_down_options
first_dict[
    "first_option_target_location_small_name"] = first_option_target_location_small_name
first_dict["first_option_target_code"] = first_option_target_code
first_dict["first_option_bench_code"] = first_option_bench_code
first_dict["s_metrics_df_output"] = s_metrics_df_output
first_dict["dict_info_output"] = dict_info_output

first_dict["c_metrics_df_output"] = c_metrics_df_output
Exemple #4
0
def make_dash_table(df):
    ''' Return a dash definitio of an HTML table for a Pandas dataframe '''
    table = []
    for index, row in df.iterrows():
        html_row = []
        for i in range(len(row)):
            html_row.append(html.Td([row[i]]))
        table.append(html.Tr(html_row))
    return table


##
#df_perf_summary = pd.read_csv("17530.csv")

df_perf_summary = fm.fin_met(ticker_start, bench_start)

modifed_perf_table = make_dash_table(df_perf_summary)

modifed_perf_table.insert(
    0,
    html.Tr([
        html.Td([]),
        html.Td(['Company'], colSpan=4, style={'text-align': "center"}),
        html.Td(['Benchmark'], colSpan=4, style={'text-align': "center"})
    ],
            style={
                'background': 'white',
                'font-weight': '600'
            }))
desc = describe(diffy["code_start"], diffy["the_benchmark"])
stock_plot_desc_output = desc

title = str(diffy["code_start_small"]) + " 4-D Report"
title_output = title

title = str(diffy["long_addy"]) + " Location"

location_output = title

title = str(diffy["the_location"]) + " Profile"

profile_output = title

df_perf_summary_output = fm.fin_met(diffy["the_benchmark"],
                                    diffy["code_start"])

df_perf_summary_output = fm.fin_met(diffy["the_benchmark"],
                                    diffy["code_start"])

first_dict = {}
first_dict["locas_output"] = locas_output
first_dict["benchy_output"] = benchy_output
first_dict["first_option_coy_output"] = first_option_coy_output
first_dict["code_start"] = code_start
first_dict["the_benchmark"] = the_benchmark

first_dict["s_metrics_df_output"] = s_metrics_df_output
first_dict["c_metrics_df_output"] = c_metrics_df_output

first_dict["stock_plot_desc_output"] = stock_plot_desc_output