def getSafeExportedLayers(self):
     '''Returns not the value entered by the user, but a string with semicolon-separated filenames
     which contains the data of the selected layers, but saved in a standard format (currently
     shapefiles for vector layers and GeoTiff for raster) so that they can be opened by most
     external applications.
     If there is a selection and QGIS is configured to use just the selection, if exports
     the layer even if it is already in a suitable format.
     Works only if the layer represented by the parameter value is currently loaded in QGIS.
     Otherwise, it will not perform any export and return the current value string.
     If the current value represents a layer in a suitable format, it does no export at all
     and returns that value.
     Currently, it works just for vector layer. In the case of raster layers, it returns the
     parameter value.
     The layers are exported just the first time the method is called. The method can be called
     several times and it will always return the same string, performing the export only the first time.'''
     if self.exported:
         return self.exported
     self.exported = self.value
     layers = self.value.split(";")
     if layers == None or len(layers) == 0:
         return self.value
     if self.datatype == ParameterMultipleInput.TYPE_RASTER:
         for layerfile in layers:
             layer = dataobjects.getObjectFromUri(layerfile, False)
             if layer:
                 filename = dataobjects.exportRasterLayer(layer)
                 self.exported = self.exported.replace(layerfile, filename)
         return self.exported
     else:
         for layerfile in layers:
             layer = dataobjects.getObjectFromUri(layerfile, False)
             if layer:
                 filename = dataobjects.exportVectorLayer(layer)
                 self.exported = self.exported.replace(layerfile, filename)
         return self.exported
Exemple #2
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)
        automaticColors = self.parameterAsBool(parameters, self.AUTO_COLORS, context)
        outputFile = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)
        frequencyDistribution = self.parameterAsFileOutput(parameters, self.FREQUENCY_DISTRIBUTION, context)

        outputFormat = QgsRasterFileWriter.driverForExtension(os.path.splitext(outputFile)[1])

        relief = QgsRelief(inputFile, outputFile, outputFormat)

        if automaticColors:
            reliefColors = relief.calculateOptimizedReliefClasses()
        else:
            colors = ParameterReliefColors.valueToColors(parameters[self.COLORS])
            if colors is None or len(colors) == 0:
                raise QgsProcessingException(
                    self.tr('Specify relief colors or activate "Generate relief classes automatically" option.'))

            reliefColors = []
            for c in colors:
                v = c.split(',')
                color = QgsRelief.ReliefColor(QColor(int(v[2]), int(v[3]), int(v[4])),
                                              float(v[0]),
                                              float(v[1]))
                reliefColors.append(color)

        relief.setReliefColors(reliefColors)
        relief.setZFactor(zFactor)
        if frequencyDistribution:
            relief.exportFrequencyDistributionToCsv(frequencyDistribution)
        relief.processRaster(feedback)

        return {self.OUTPUT: outputFile, self.FREQUENCY_DISTRIBUTION: frequencyDistribution}
Exemple #3
0
    def getSafeExportedLayer(self):
        """Returns not the value entered by the user, but a string with
        a filename which contains the data of this layer, but saved in
        a standard format (currently always a geotiff file) so that it
        can be opened by most external applications.

        Works only if the layer represented by the parameter value is
        currently loaded in QGIS. Otherwise, it will not perform any
        export and return the current value string.

        If the current value represents a layer in a suitable format,
        it does not export at all and returns that value.

        The layer is exported just the first time the method is called.
        The method can be called several times and it will always
        return the same file, performing the export only the first
        time.
        """

        if self.exported:
            return self.exported
        layer = dataobjects.getObjectFromUri(self.value, False)
        if layer:
            self.exported = dataobjects.exportRasterLayer(layer)
        else:
            self.exported = self.value
        return self.exported
Exemple #4
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)
        automaticColors = self.parameterAsBool(parameters, self.AUTO_COLORS, context)
        outputFile = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)
        frequencyDistribution = self.parameterAsFileOutput(parameters, self.FREQUENCY_DISTRIBUTION, context)

        outputFormat = QgsRasterFileWriter.driverForExtension(os.path.splitext(outputFile)[1])

        relief = QgsRelief(inputFile, outputFile, outputFormat)

        if automaticColors:
            reliefColors = relief.calculateOptimizedReliefClasses()
        else:
            colors = ParameterReliefColors.valueToColors(parameters[self.COLORS])
            if colors is None or len(colors) == 0:
                raise QgsProcessingException(
                    self.tr('Specify relief colors or activate "Generate relief classes automatically" option.'))

            reliefColors = []
            for c in colors:
                v = c.split(',')
                color = QgsRelief.ReliefColor(QColor(int(v[2]), int(v[3]), int(v[4])),
                                              float(v[0]),
                                              float(v[1]))
                reliefColors.append(color)

        relief.setReliefColors(reliefColors)
        relief.setZFactor(zFactor)
        if frequencyDistribution:
            relief.exportFrequencyDistributionToCsv(frequencyDistribution)
        relief.processRaster(feedback)

        return {self.OUTPUT: outputFile, self.FREQUENCY_DISTRIBUTION: frequencyDistribution}
Exemple #5
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)

        outputFile = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)
        outputFormat = QgsRasterFileWriter.driverForExtension(os.path.splitext(outputFile)[1])

        ruggedness = QgsRuggednessFilter(inputFile, outputFile, outputFormat)
        ruggedness.setZFactor(zFactor)
        ruggedness.processRaster(feedback)

        return {self.OUTPUT: outputFile}
Exemple #6
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)

        outputFile = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)
        outputFormat = QgsRasterFileWriter.driverForExtension(os.path.splitext(outputFile)[1])

        ruggedness = QgsRuggednessFilter(inputFile, outputFile, outputFormat)
        ruggedness.setZFactor(zFactor)
        ruggedness.processRaster(feedback)

        return {self.OUTPUT: outputFile}
    def getSafeExportedLayers(self):
        """
        Returns not the value entered by the user, but a string with
        semicolon-separated filenames which contains the data of the
        selected layers, but saved in a standard format (currently
        shapefiles for vector layers and GeoTiff for raster) so that
        they can be opened by most external applications.

        If there is a selection and QGIS is configured to use just the
        selection, it exports the layer even if it is already in a
        suitable format.

        Works only if the layer represented by the parameter value is
        currently loaded in QGIS. Otherwise, it will not perform any
        export and return the current value string.

        If the current value represents a layer in a suitable format,
        it does no export at all and returns that value.

        Currently, it works just for vector layer. In the case of
        raster layers, it returns the parameter value.

        The layers are exported just the first time the method is
        called. The method can be called several times and it will
        always return the same string, performing the export only the
        first time.
        """
        context = dataobjects.createContext()
        if self.exported:
            return self.exported
        self.exported = self.value
        layers = self.value.split(';')
        if layers is None or len(layers) == 0:
            return self.value
        if self.datatype == dataobjects.TYPE_RASTER:
            for layerfile in layers:
                layer = QgsProcessingUtils.mapLayerFromString(
                    layerfile, context, False)
                if layer:
                    filename = dataobjects.exportRasterLayer(layer)
                    self.exported = self.exported.replace(layerfile, filename)
            return self.exported
        elif self.datatype == dataobjects.TYPE_FILE:
            return self.value
        else:
            for layerfile in layers:
                layer = QgsProcessingUtils.mapLayerFromString(
                    layerfile, context, False)
                if layer:
                    filename = dataobjects.exportVectorLayer(layer)
                    self.exported = self.exported.replace(layerfile, filename)
            return self.exported
Exemple #8
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)

        outputFile = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)

        outputFormat = raster.formatShortNameFromFileName(outputFile)

        aspect = QgsAspectFilter(inputFile, outputFile, outputFormat)
        aspect.setZFactor(zFactor)
        aspect.processRaster(feedback)

        return {self.OUTPUT: outputFile}
Exemple #9
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT_LAYER, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)

        outputFile = self.parameterAsRasterOutputLayer(parameters, self.OUTPUT_LAYER, context)

        outputFormat = raster.formatShortNameFromFileName(outputFile)

        aspect = QgsAspectFilter(inputFile, outputFile, outputFormat)
        aspect.setZFactor(zFactor)
        aspect.processRaster(None)

        return {self.OUTPUT_LAYER: outputFile}
Exemple #10
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)
        azimuth = self.parameterAsDouble(parameters, self.AZIMUTH, context)
        vAngle = self.parameterAsDouble(parameters, self.V_ANGLE, context)

        outputFile = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)
        outputFormat = QgsRasterFileWriter.driverForExtension(os.path.splitext(outputFile)[1])

        hillshade = QgsHillshadeFilter(inputFile, outputFile, outputFormat, azimuth, vAngle)
        hillshade.setZFactor(zFactor)
        hillshade.processRaster(feedback)

        return {self.OUTPUT: outputFile}
Exemple #11
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)
        azimuth = self.parameterAsDouble(parameters, self.AZIMUTH, context)
        vAngle = self.parameterAsDouble(parameters, self.V_ANGLE, context)

        outputFile = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)
        outputFormat = QgsRasterFileWriter.driverForExtension(os.path.splitext(outputFile)[1])

        hillshade = QgsHillshadeFilter(inputFile, outputFile, outputFormat, azimuth, vAngle)
        hillshade.setZFactor(zFactor)
        hillshade.processRaster(feedback)

        return {self.OUTPUT: outputFile}
Exemple #12
0
    def processAlgorithm(self, parameters, context, feedback):
        inputFile = exportRasterLayer(self.parameterAsRasterLayer(parameters, self.INPUT, context))
        zFactor = self.parameterAsDouble(parameters, self.Z_FACTOR, context)
        azimuth = self.parameterAsDouble(parameters, self.AZIMUTH, context)
        vAngle = self.parameterAsDouble(parameters, self.V_ANGLE, context)

        outputFile = self.parameterAsOutputLayer(parameters, self.OUTPUT, context)

        outputFormat = raster.formatShortNameFromFileName(outputFile)

        hillshade = QgsHillshadeFilter(inputFile, outputFile, outputFormat, azimuth, vAngle)
        hillshade.setZFactor(zFactor)
        hillshade.processRaster(feedback)

        return {self.OUTPUT: outputFile}
Exemple #13
0
    def processAlgorithm(self, parameters, context, feedback):
        raster_layer = self.parameterAsRasterLayer(parameters, self.INPUT_DEM, context)
        target_crs = raster_layer.crs()
        rasterPath = exportRasterLayer(raster_layer)

        source = self.parameterAsSource(parameters, self.BOUNDARY_LAYER, context)
        step = self.parameterAsDouble(parameters, self.STEP, context)
        percentage = self.parameterAsBool(parameters, self.USE_PERCENTAGE, context)

        outputPath = self.parameterAsString(parameters, self.OUTPUT_DIRECTORY, context)

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()
        rasterBand = rasterDS.GetRasterBand(1)
        noData = rasterBand.GetNoDataValue()

        cellXSize = abs(geoTransform[1])
        cellYSize = abs(geoTransform[5])
        rasterXSize = rasterDS.RasterXSize
        rasterYSize = rasterDS.RasterYSize

        rasterBBox = QgsRectangle(geoTransform[0],
                                  geoTransform[3] - cellYSize * rasterYSize,
                                  geoTransform[0] + cellXSize * rasterXSize,
                                  geoTransform[3])
        rasterGeom = QgsGeometry.fromRect(rasterBBox)

        crs = osr.SpatialReference()
        crs.ImportFromProj4(str(target_crs.toProj4()))

        memVectorDriver = ogr.GetDriverByName('Memory')
        memRasterDriver = gdal.GetDriverByName('MEM')

        features = source.getFeatures(QgsFeatureRequest().setDestinationCrs(target_crs))
        total = 100.0 / source.featureCount() if source.featureCount() else 0

        for current, f in enumerate(features):
            if not f.hasGeometry():
                continue

            if feedback.isCanceled():
                break

            geom = f.geometry()
            intersectedGeom = rasterGeom.intersection(geom)

            if intersectedGeom.isEmpty():
                feedback.pushInfo(
                    self.tr('Feature {0} does not intersect raster or '
                            'entirely located in NODATA area').format(f.id()))
                continue

            fName = os.path.join(
                outputPath, 'hystogram_%s_%s.csv' % (source.sourceName(), f.id()))

            ogrGeom = ogr.CreateGeometryFromWkt(intersectedGeom.asWkt())
            bbox = intersectedGeom.boundingBox()
            xMin = bbox.xMinimum()
            xMax = bbox.xMaximum()
            yMin = bbox.yMinimum()
            yMax = bbox.yMaximum()

            (startColumn, startRow) = raster.mapToPixel(xMin, yMax, geoTransform)
            (endColumn, endRow) = raster.mapToPixel(xMax, yMin, geoTransform)

            width = endColumn - startColumn
            height = endRow - startRow

            srcOffset = (startColumn, startRow, width, height)
            srcArray = rasterBand.ReadAsArray(*srcOffset)

            if srcOffset[2] == 0 or srcOffset[3] == 0:
                feedback.pushInfo(
                    self.tr('Feature {0} is smaller than raster '
                            'cell size').format(f.id()))
                continue

            newGeoTransform = (
                geoTransform[0] + srcOffset[0] * geoTransform[1],
                geoTransform[1],
                0.0,
                geoTransform[3] + srcOffset[1] * geoTransform[5],
                0.0,
                geoTransform[5]
            )

            memVDS = memVectorDriver.CreateDataSource('out')
            memLayer = memVDS.CreateLayer('poly', crs, ogr.wkbPolygon)

            ft = ogr.Feature(memLayer.GetLayerDefn())
            ft.SetGeometry(ogrGeom)
            memLayer.CreateFeature(ft)
            ft.Destroy()

            rasterizedDS = memRasterDriver.Create('', srcOffset[2],
                                                  srcOffset[3], 1, gdal.GDT_Byte)
            rasterizedDS.SetGeoTransform(newGeoTransform)
            gdal.RasterizeLayer(rasterizedDS, [1], memLayer, burn_values=[1])
            rasterizedArray = rasterizedDS.ReadAsArray()

            srcArray = numpy.nan_to_num(srcArray)
            masked = numpy.ma.MaskedArray(srcArray,
                                          mask=numpy.logical_or(srcArray == noData,
                                                                numpy.logical_not(rasterizedArray)))

            self.calculateHypsometry(f.id(), fName, feedback, masked,
                                     cellXSize, cellYSize, percentage, step)

            memVDS = None
            rasterizedDS = None
            feedback.setProgress(int(current * total))

        rasterDS = None

        return {self.OUTPUT_DIRECTORY: outputPath}
Exemple #14
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT_VECTOR, context)

        raster_layer = self.parameterAsRasterLayer(parameters, self.INPUT_RASTER, context)
        rasterPath = exportRasterLayer(raster_layer)

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()
        rasterDS = None

        fields = QgsFields()
        fields.append(QgsField('id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('line_id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('point_id', QVariant.Int, '', 10, 0))

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
                                               fields, QgsWkbTypes.Point, raster_layer.crs())

        outFeature = QgsFeature()
        outFeature.setFields(fields)

        self.fid = 0
        self.lineId = 0
        self.pointId = 0

        features = source.getFeatures(QgsFeatureRequest().setDestinationCrs(raster_layer.crs()))
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        for current, f in enumerate(features):
            if feedback.isCanceled():
                break
            geom = f.geometry()
            if geom.isMultipart():
                lines = geom.asMultiPolyline()
                for line in lines:
                    for i in range(len(line) - 1):
                        p1 = line[i]
                        p2 = line[i + 1]

                        (x1, y1) = raster.mapToPixel(p1.x(), p1.y(),
                                                     geoTransform)
                        (x2, y2) = raster.mapToPixel(p2.x(), p2.y(),
                                                     geoTransform)

                        self.buildLine(x1, y1, x2, y2, geoTransform,
                                       sink, outFeature)
            else:
                points = geom.asPolyline()
                for i in range(len(points) - 1):
                    p1 = points[i]
                    p2 = points[i + 1]

                    (x1, y1) = raster.mapToPixel(p1.x(), p1.y(), geoTransform)
                    (x2, y2) = raster.mapToPixel(p2.x(), p2.y(), geoTransform)

                    self.buildLine(x1, y1, x2, y2, geoTransform, sink,
                                   outFeature)

            self.pointId = 0
            self.lineId += 1

            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}
Exemple #15
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT_VECTOR, context)

        raster_layer = self.parameterAsRasterLayer(parameters, self.INPUT_RASTER, context)
        rasterPath = exportRasterLayer(raster_layer)

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()

        fields = QgsFields()
        fields.append(QgsField('id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('poly_id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('point_id', QVariant.Int, '', 10, 0))

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
                                               fields, QgsWkbTypes.Point, raster_layer.crs())

        outFeature = QgsFeature()
        outFeature.setFields(fields)

        fid = 0
        polyId = 0
        pointId = 0

        features = source.getFeatures(QgsFeatureRequest().setDestinationCrs(raster_layer.crs()))
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        for current, f in enumerate(features):
            if feedback.isCanceled():
                break

            if not f.hasGeometry():
                continue

            geom = f.geometry()
            bbox = geom.boundingBox()

            xMin = bbox.xMinimum()
            xMax = bbox.xMaximum()
            yMin = bbox.yMinimum()
            yMax = bbox.yMaximum()

            (startRow, startColumn) = raster.mapToPixel(xMin, yMax, geoTransform)
            (endRow, endColumn) = raster.mapToPixel(xMax, yMin, geoTransform)

            # use prepared geometries for faster intersection tests
            engine = QgsGeometry.createGeometryEngine(geom.constGet())
            engine.prepareGeometry()

            for row in range(startRow, endRow + 1):
                for col in range(startColumn, endColumn + 1):
                    if feedback.isCanceled():
                        break

                    (x, y) = raster.pixelToMap(row, col, geoTransform)
                    point = QgsPoint(x, y)

                    if engine.contains(point):
                        outFeature.setGeometry(QgsGeometry(point))
                        outFeature['id'] = fid
                        outFeature['poly_id'] = polyId
                        outFeature['point_id'] = pointId

                        fid += 1
                        pointId += 1

                        sink.addFeature(outFeature, QgsFeatureSink.FastInsert)

            pointId = 0
            polyId += 1

            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}
Exemple #16
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT_VECTOR, context)

        raster_layer = self.parameterAsRasterLayer(parameters,
                                                   self.INPUT_RASTER, context)
        rasterPath = exportRasterLayer(raster_layer)

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()

        fields = QgsFields()
        fields.append(QgsField('id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('poly_id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('point_id', QVariant.Int, '', 10, 0))

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
                                               context, fields,
                                               QgsWkbTypes.Point,
                                               raster_layer.crs())

        outFeature = QgsFeature()
        outFeature.setFields(fields)

        fid = 0
        polyId = 0
        pointId = 0

        features = source.getFeatures(QgsFeatureRequest().setDestinationCrs(
            raster_layer.crs()))
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        for current, f in enumerate(features):
            if feedback.isCanceled():
                break

            if not f.hasGeometry():
                continue

            geom = f.geometry()
            bbox = geom.boundingBox()

            xMin = bbox.xMinimum()
            xMax = bbox.xMaximum()
            yMin = bbox.yMinimum()
            yMax = bbox.yMaximum()

            (startRow,
             startColumn) = raster.mapToPixel(xMin, yMax, geoTransform)
            (endRow, endColumn) = raster.mapToPixel(xMax, yMin, geoTransform)

            # use prepared geometries for faster intersection tests
            engine = QgsGeometry.createGeometryEngine(geom.geometry())
            engine.prepareGeometry()

            for row in range(startRow, endRow + 1):
                for col in range(startColumn, endColumn + 1):
                    if feedback.isCanceled():
                        break

                    (x, y) = raster.pixelToMap(row, col, geoTransform)
                    point = QgsPoint(x, y)

                    if engine.contains(point):
                        outFeature.setGeometry(QgsGeometry(point))
                        outFeature['id'] = fid
                        outFeature['poly_id'] = polyId
                        outFeature['point_id'] = pointId

                        fid += 1
                        pointId += 1

                        sink.addFeature(outFeature, QgsFeatureSink.FastInsert)

            pointId = 0
            polyId += 1

            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}
Exemple #17
0
    def processAlgorithm(self, parameters, context, feedback):
        raster_layer = self.parameterAsRasterLayer(parameters, self.INPUT_DEM,
                                                   context)
        target_crs = raster_layer.crs()
        rasterPath = exportRasterLayer(raster_layer)

        source = self.parameterAsSource(parameters, self.BOUNDARY_LAYER,
                                        context)
        step = self.parameterAsDouble(parameters, self.STEP, context)
        percentage = self.parameterAsBool(parameters, self.USE_PERCENTAGE,
                                          context)

        outputPath = self.parameterAsString(parameters, self.OUTPUT_DIRECTORY,
                                            context)

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()
        rasterBand = rasterDS.GetRasterBand(1)
        noData = rasterBand.GetNoDataValue()

        cellXSize = abs(geoTransform[1])
        cellYSize = abs(geoTransform[5])
        rasterXSize = rasterDS.RasterXSize
        rasterYSize = rasterDS.RasterYSize

        rasterBBox = QgsRectangle(geoTransform[0],
                                  geoTransform[3] - cellYSize * rasterYSize,
                                  geoTransform[0] + cellXSize * rasterXSize,
                                  geoTransform[3])
        rasterGeom = QgsGeometry.fromRect(rasterBBox)

        crs = osr.SpatialReference()
        crs.ImportFromProj4(str(target_crs.toProj4()))

        memVectorDriver = ogr.GetDriverByName('Memory')
        memRasterDriver = gdal.GetDriverByName('MEM')

        features = source.getFeatures(
            QgsFeatureRequest().setDestinationCrs(target_crs))
        total = 100.0 / source.featureCount() if source.featureCount() else 0

        for current, f in enumerate(features):
            if not f.hasGeometry():
                continue

            if feedback.isCanceled():
                break

            geom = f.geometry()
            intersectedGeom = rasterGeom.intersection(geom)

            if intersectedGeom.isEmpty():
                feedback.pushInfo(
                    self.tr('Feature {0} does not intersect raster or '
                            'entirely located in NODATA area').format(f.id()))
                continue

            fName = os.path.join(
                outputPath,
                'hystogram_%s_%s.csv' % (source.sourceName(), f.id()))

            ogrGeom = ogr.CreateGeometryFromWkt(intersectedGeom.exportToWkt())
            bbox = intersectedGeom.boundingBox()
            xMin = bbox.xMinimum()
            xMax = bbox.xMaximum()
            yMin = bbox.yMinimum()
            yMax = bbox.yMaximum()

            (startColumn,
             startRow) = raster.mapToPixel(xMin, yMax, geoTransform)
            (endColumn, endRow) = raster.mapToPixel(xMax, yMin, geoTransform)

            width = endColumn - startColumn
            height = endRow - startRow

            srcOffset = (startColumn, startRow, width, height)
            srcArray = rasterBand.ReadAsArray(*srcOffset)

            if srcOffset[2] == 0 or srcOffset[3] == 0:
                feedback.pushInfo(
                    self.tr('Feature {0} is smaller than raster '
                            'cell size').format(f.id()))
                continue

            newGeoTransform = (geoTransform[0] +
                               srcOffset[0] * geoTransform[1], geoTransform[1],
                               0.0, geoTransform[3] +
                               srcOffset[1] * geoTransform[5], 0.0,
                               geoTransform[5])

            memVDS = memVectorDriver.CreateDataSource('out')
            memLayer = memVDS.CreateLayer('poly', crs, ogr.wkbPolygon)

            ft = ogr.Feature(memLayer.GetLayerDefn())
            ft.SetGeometry(ogrGeom)
            memLayer.CreateFeature(ft)
            ft.Destroy()

            rasterizedDS = memRasterDriver.Create('', srcOffset[2],
                                                  srcOffset[3], 1,
                                                  gdal.GDT_Byte)
            rasterizedDS.SetGeoTransform(newGeoTransform)
            gdal.RasterizeLayer(rasterizedDS, [1], memLayer, burn_values=[1])
            rasterizedArray = rasterizedDS.ReadAsArray()

            srcArray = numpy.nan_to_num(srcArray)
            masked = numpy.ma.MaskedArray(
                srcArray,
                mask=numpy.logical_or(srcArray == noData,
                                      numpy.logical_not(rasterizedArray)))

            self.calculateHypsometry(f.id(), fName, feedback, masked,
                                     cellXSize, cellYSize, percentage, step)

            memVDS = None
            rasterizedDS = None
            feedback.setProgress(int(current * total))

        rasterDS = None

        return {self.OUTPUT_DIRECTORY: outputPath}
Exemple #18
0
    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT_VECTOR, context)

        raster_layer = self.parameterAsRasterLayer(parameters,
                                                   self.INPUT_RASTER, context)
        rasterPath = exportRasterLayer(raster_layer)

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()
        rasterDS = None

        fields = QgsFields()
        fields.append(QgsField('id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('line_id', QVariant.Int, '', 10, 0))
        fields.append(QgsField('point_id', QVariant.Int, '', 10, 0))

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
                                               context, fields,
                                               QgsWkbTypes.Point,
                                               raster_layer.crs())

        outFeature = QgsFeature()
        outFeature.setFields(fields)

        self.fid = 0
        self.lineId = 0
        self.pointId = 0

        features = source.getFeatures(QgsFeatureRequest().setDestinationCrs(
            raster_layer.crs()))
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        for current, f in enumerate(features):
            if feedback.isCanceled():
                break
            geom = f.geometry()
            if geom.isMultipart():
                lines = geom.asMultiPolyline()
                for line in lines:
                    for i in range(len(line) - 1):
                        p1 = line[i]
                        p2 = line[i + 1]

                        (x1, y1) = raster.mapToPixel(p1.x(), p1.y(),
                                                     geoTransform)
                        (x2, y2) = raster.mapToPixel(p2.x(), p2.y(),
                                                     geoTransform)

                        self.buildLine(x1, y1, x2, y2, geoTransform, sink,
                                       outFeature)
            else:
                points = geom.asPolyline()
                for i in range(len(points) - 1):
                    p1 = points[i]
                    p2 = points[i + 1]

                    (x1, y1) = raster.mapToPixel(p1.x(), p1.y(), geoTransform)
                    (x2, y2) = raster.mapToPixel(p2.x(), p2.y(), geoTransform)

                    self.buildLine(x1, y1, x2, y2, geoTransform, sink,
                                   outFeature)

            self.pointId = 0
            self.lineId += 1

            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}